
CS 3204 Spring 2008 Final Exam

1/8

CS 3204 Final Exam

13 students took this exam. The following histogram and table shows the
statistics. The exams can be picked up from my office.

Problem Points Min Max Mean Median SD

1 Checkpointing 25 5 24 16.62 17 4.82

2 Buffer Caching Algorithms 20 7 20 15.15 17 3.69

3 File Systems 20 2 20 13.46 17 6.83

4 Avoiding Stack Overflow 20 0 20 9.54 8 6.70

5 Large vs. Small Kernel 15 10 15 12.23 12 2.17

Total 100 31 89 67.00 75 19.13

Solutions are shown in this style.
Grading comments are shown in this style.

CS 3204 Spring 2008 Final Exam

2/8

1 Checkpointing (25 pts)
Modern scientific applications that model complex physical phenomena may run
for days and even months on end. To protect the results of these applications
from machine failures, a technique referred to as checkpointing is used.
Essentially, the application is paused, and its entire state is saved to the disk in a
checkpoint file. If the application later fails, the last saved state is loaded from the
file into memory and the application can resume without losing days/months
worth of work.

a) (8 pts) Outline how will you incorporate checkpointing in Pintos kernel that
has virtual memory support, especially, focusing on how you will pause the
application, what features you will leverage and extend, what kernel-level data
structures you will use to determine what should be saved, and how the
checkpoint file should be created? For full-credit you should name specific
Pintos structures/functions.

This requires writing all process associated pages to the checkpoint file. The
pages include in-memory frames as well as swapped out pages. The
supplemental page table is used to determine what application pages are stored
where. The supplemental page table itself also needs to be written to the disk. In
addition, the information needed at context-switch also needs to be saved, e.g.,
CPU registers, stack pointer etc. You also have to keep track of all the open files,
and store that information in the checkpoint file.

The best way to pause (or take a snapshot of) the application is as follows. First,
a fork of the original process is done to create a copy of the process (including
multiple threads). Then the newly created process is moved to the suspended
state, and all its contents written to the checkpoint file. The original process can
continue to execute meanwhile.

Many students used timer_interruppt to pause the application. This will work for
Pintos as there is only one running thread, but will not work if a process has
multiple threads. I gave partial credit for this. Most students missed open files
and other information.

b) (2 pts) Comment on whether virtual memory facilitates or hinders your
checkpointing approach, and why?

First, VM reduces the added complexity of checkpointing as all the necessary
information is already available in the VM supplemental page tables. Second and
very importantly, VM allows checkpointed pages to be restored to different
(available) physical frames while preserving the process’ original view of its
virtual address space. It would be extremely hard or even impossible to support
checkpointing/restore without virtual memory.

I gave partial credit to answers that gave weaker reasons for benefits of VM.

CS 3204 Spring 2008 Final Exam

3/8

c) (5 + 3 pts) Outline the procedure for resuming an application from a
checkpoint. You should provide at least two optimizations to improve the
performance of this process.

A new thread is created. The supplemental page table is loaded from the
checkpoint file to memory. All the in-memory pages are reloaded in memory, and
all the swapped out pages from the checkpoint file are moved to the swap space.
This may also require swapping other processes’ pages from core memory to
make room for pages being restored pages. All the files that were originally open
should be opened again, and the associated location pointers updated to correct
locations. The saved CPU registers and state is loaded into the thread structure.
Since, we forked the original process and suspended it, the restored process is a
copy of the original in suspended state. Once all the state is ready, the newly
created process is moved to the ready state and the kernel will context switch to
it when it is selected by the scheduler. The process will resume from the same
point as where it was suspended.

Opt1: Use lazy load of the checkpoint pages. Requires modification to the kernel
supplemental pages to also include a “location” of CHECKPOINT_FILE, in
addition to executable and swap.

Opt2: Don’t write any code segment and load that direct from the application
executable. Requires careful handling while writing the checkpoint file, and
availability of the executable when restoring.

d) (2 pts) Give a scenario where checkpointing/resume will not work.

If the application is communicating with the outside world, e.g., over the network,
with a user, then the checkpoint cannot capture this interaction. That outside data
cannot always be resend so it may not be possible to always restart.

Failure of checkpointing process, and corruption of checkpoint file are naïve
reasons, I only gave partial credit for these.

e) (5 pts) It is possible to checkpoint on one machine, transfer the checkpoint file
to a different machine, and resume the application there. This is called
application migration. List two main challenges that your checkpointing
approach faces if it has to support application migration.

Hardware software difference may make it impossible to migrate. So the
checkpoint has to be done in a portable manner. That is simply writing CPU or
thread states won’t work and require special consideration so both the machines
can understand the checkpoint file and interpret it in a meaningful way. Think
about how you would migrate a Linux process to a Windows machine! Second,
the machine on which a process is being restored should have all the data files
etc. that were opened and available on the checkpointing machine.

CS 3204 Spring 2008 Final Exam

4/8

2 Buffer Caching Algorithms (20 pts)

For this question, assume a buffer cache that can only hold 4 data blocks. You
can ignore the need for storing meta-data etc.

a) (4 + 4 pts) An application with a working set size of greater than 4 will have
poor performance with our cache. Construct an example reference stream with
the working set size of 5 that will give the worst hit ratio. Construct another
example that will have a better hit ratio than the worst case. [Assume LRU for
calculating hit ratios]

A reference stream with 5 blocks, e.g. A, B, C, D, E repeated in a looping fashion
will give worst case behavior. Any combination of these (as long as it as 5
different blocks) will give better hit ratio. An example A, A, B , C, D, E repeatedly
accessed in a loop.

b) (5 + 3 pts) For your worst case example from (a), determine the hit ratio under
Belady’s optimal cache replacement algorithm. Based on your results, suggest
a practical replacement algorithm that will result in close to optimal hit ratio for
your example.

Assuming A, B, C, D, E … Beladys’s algorithm will give behave as follows:
M M M M M H H H M H H H M H H H M

Hence, over time the hit ratio with Beladys under steady state will approach 75%.

Most Recently Used is the policy that will give close to Belady’s performance
here with 60% hit ratio.

I also awarded partial credit for stating the LIFO algorithm instead of MRU.

c) (4 pts) For this part, assume that you have an extremely fast disk that
supports access times similar to memory. Do we still need to have a buffer
cache? Why?

The cache is designed to hide disk latency. However, having a cache allows the
disk to be not used, while requests are being serviced from the cache. This
provides opportunities for the disk to be shut down to save energy. So even with
a fast disk, a buffer cache is useful.

This question was meant to make students think beyond simple principles. I was
hoping to have at least one student identify the energy saving perspective.
Anyways, I awarded credit to answers that identified the main purpose for the
cache is to hide disk latency from applications. Full credit was awarded to
students who gave a reasonable discussion of why buffer cache is used in the
first place and how it complicates OS design.

CS 3204 Spring 2008 Final Exam

5/8

3 File Systems (20 pts)
a) (8 pts) You are to design a special-purpose file system for storing digital
images. Each image is of [the same] fixed-size and stored in a different file.
The name of the file is a 128-bit unique number. Your file system should be
able to store an extremely large number of such files. List the main design
decisions of your file system, and compare and contrast your approach to
your implementation of Pintos Project 4 on file systems.

Since the file sizes are fixed, you do not have to support file extension. Also,
given that the size of the disk is known, you can calculate at the beginning how
many files can be stored and created available map, file entries etc. statically.
You also do no need to have index inodes, as contagious allocation can be done.
You can choose a flat directory hierarchy to simply things.

The challenge is to find files, especially when a large number of files are to be
stored. The disk can be divided into fixed-size slots for file size each. Using a
hash function on the name of the file, a unique slot for storing the file can be
determined. If the slot is already full, a different hash can be created.

Compared to P4, this does not require multi-level indices, nor need to support
subdirectories and extensible files. The on-disk data structures are also simpler.

Most students got this right. However, full credit was only given if you discussed
how an extremely large number of files can be managed, either through a hash
mapping, or through some name-based sub-directories (to manage the files in a
tree).

b) (3 pts) Give the steps to delete a file in your file system.

Locate the file to be deleted, remove its entry from the directory, and mark the
corresponding disk space as available for other files. The slot can be used by
other files now.

c) (4 pts) What can you say about fragmentation in your file system
compared to your Project 4 implementation?

All files are of equal size, so there is no external fragmentation. Also the size of
the file is known in advance so internal fragmentation can be minimized by
proper selection of block sizes, or even eliminated. This is not easy to do in
Project 4 as the file sizes are unknown and vary.

d) (2 + 3 pts) You are given two logical volumes that are formatted according
to your file system design above. One volume is completely full, the other has
more than the first’s size available and free. Explain how you will merge the
two volumes into one. Explain how you will merge the volumes, if both are
almost full.

CS 3204 Spring 2008 Final Exam

6/8

For case 1, simply repeat the following. Take a file from the smaller volume, copy
it to the larger volume, delete the original from the smaller volume. Do this for all
the files. Then add the smaller volumes disk space to the large volume, and
update freemap and other structures on the larger volume.

For case 2, the above process is done but in steps. Taking a number of files from
smaller volume, adding it to the large volume till the large volume is full. Then
space from smaller volume is added to the larger volume, and the process
repeated.

This question is actually more complex than the above discussion. But as long as
the answers hit on the above points, I gave credit.

CS 3204 Spring 2008 Final Exam

7/8

4 Avoiding Stack Overflow (20 pts)

A number of computer security issues arise when a user can overflow the stack
so as to overwrite the valid program loaded into memory with malicious code.
Once, the malicious code is executed, it can give the user unauthorized access.
In this question, you will design a technique to avoid such a problem.

a) (15 pts) Write a C program that uses mmap to protect itself from stack

overflow attacks. For full credit, you must use the appropriate functions,
and provide correct addresses for mmaping.
void my_function (void)

{

 int foo;

 int fd = fopen(“my_test_file”, “r”);

 mmapid_t protector mmap(fd, &foo-ALLOWED_LIMIT);

 // do stuff

 munmap(protector);

 fclose(fd);

}

You program has to do the following things: Determine the address of the stack.
As long as you defined a local variable and used its address with some offset this
was fine. Mmap the file read only between the stack and the executable code.

b) (5 pts) Stack overflow attacks require in-depth understanding of how the

stack memory is assigned with respect to the users program in virtual
memory. Assuming we cannot detect stack overflow, suggest how you can
make it more difficult for a would-be attacker to compromise the system
using stack overflow.

You can randomize the location of the stack in the virtual memory with respect to
the executable. This will make it very difficult for a stack overflow attack to do
harm. (It can still cause the process to crash though). Alternatively, you can
make the stack portion non-executable. This will allow access to the stack but will
not allow any execution of code in the stack range.

This was intentionally repeated from the midterm. Only students who have paid
attention to the in class discussion regarding this received full credit.

CS 3204 Spring 2008 Final Exam

8/8

5 Large vs. Small Kernel (15 pts)

Describe the trade-offs of having a large and complex operating system with a lot
of functionality in the kernel versus having a minimal kernel and letting
applications devise their own custom solutions to various OS tasks. Describe
situations in which these trade-offs matters and which factors you may need to
take into account when choosing or designing an OS.

Note: This question will be graded both for content/correctness (10 pts) and for
your ability to communicate effectively in writing (5 pts). Make sure you define the
trade-off clearly, and elaborate on its meaning and consequences. Your answer
should be well-written, organized, and clear.

Three tradeoffs: Flexibility, security, efficiency. Small kernel provides more
flexibility. A larger kernel may be more efficient by allowing users to focus on
their applications rather than reinventing the wheel. Management of shared
resources such as memory, disk, etc. is difficult to do in user space, and must be
incorporated in the kernel. Also, a smaller kernel actually improves security with
fewer kernel debilitating bugs etc.

As long as you mentioned two of the tradeoffs, and stated your answer in a clear
and meaningful context I awarded credit.

For content: Excellent answers clearly stated at least two of the above
constraints. Good answers made some mention of these issues, but gave fewer
details. There were no unsatisfactory answers.

For writing: Excellent answers used precise terms and no language mistakes.
Good answers relied on inexact wording. Once again, I did not come across any
unsatisfactory answers.

Rubric for converting Excellent/Good/Unsatisfactory to points:

 Writing Content
Excellent 5 10
Good 3 7
Unsatisfactory 0 0

