
Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

P0 Discussion

Operating Systems

1Project 0: User-level Memory Allocator

The memory resource consists of a collection of blocks, some allocated to users
and some free to be allocated in the future.

Memory is just a sequence of bytes, each with a unique address (offset).

Allocator must keep track of where free and used blocks are.

used blockfree blockfree list

start enduser object user object

Managed memory

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

P0 Discussion

Operating Systems

2Project 0: Data Structures

It suits our current purpose to use a simple list (supplied in the pintos source
code) to track the used and free blocks.

Remember that the list nodes must also be allocated from the managed memory.

What information must be maintained for a free block? Is there any difference
for a used block?

struct free_block {

size_t length; /* length of block,

including header */

struct list_elem elem; /* list element for free list */

};

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

P0 Discussion

Operating Systems

3Project 0: pintos list

free list

struct list {
struct list_elem head;
struct list_elem tail;

}; struct list_elem {
struct list_elem *prev;
struct list_elem *next;

};

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

P0 Discussion

Operating Systems

4Project 0: address computations

Problem:
- we have a pintos list pointer p, which targets a list_elem object
- we need a pointer q to the surrounding free_block object

p
q

We don't want to make any assumptions about the layout in memory of the
free-block object that could cause problems if the object specification
changed.

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

P0 Discussion

Operating Systems

5Project 0: address computations

If we knew one fact, the address we need would be easy to compute:

nextprev

AB

C: offset of next within the free_block object

We know the address A.

If we knew C, then the address of the free_block object would seem to be:

B = A - C

But the semantics of pointer arithmetic get in the way…

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

P0 Discussion

Operating Systems

6Project 0: pointer arithmetic

From the C Standard:

When two pointers are subtracted, both shall point to elements of the same array object,
or one past the last element of the array object; the result is the difference of the
subscripts of the two array elements. The size of the result is implementation-defined,
and its type (a signed integer type) is ptrdiff_t defined in the <stddef.h> header.
If the result is not representable in an object of that type, the behavior is undefined. In
other words, if the expressions P and Q point to, respectively, the i-th and j-th elements of
an array object, the expression (P)-(Q) has the value i−j provided the value fits in an
object of type ptrdiff_t.

We have type issues.

p is a list_elem*
q is a free_block*

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

P0 Discussion

Operating Systems

7Project 0: pointer casts

We need to cast the relevant pointer types so that the computation yields the
address of the 0-th byte of the free_block object:

But how do we get the offset of a member of an object?

p is a list_elem*
q is a free_block*

q = (free_block*)((uint8_t*)(&p->next) – C)

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

P0 Discussion

Operating Systems

8Project 0: offsetof()

The C Standard Library provides a solution:

So we could write something like:

offsetof(type, member-designator)

expands to an integer constant expression that has type size_t, the value of
which is the offset in bytes, to the structure member (designated by member-
designator), from the beginning of its structure (designated by type).

q = (free_block*)((uint8_t*)(&p->next) –
offsetof(struct free_block, elem.next))

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

P0 Discussion

Operating Systems

9Project 0: pintos list_entry() macro

Since this sort of thing comes up quite a bit when pintos list objects are used,
it's in the spirit of C to create a generic macro that the pre-processor can expand:

Then if we write:

free_block *q = list_entry(p, struct free_block, elem);

#define list_entry(LIST_ELEM, STRUCT, MEMBER) \
((STRUCT *) ((uint8_t *) &(LIST_ELEM)->next \

- offsetof (STRUCT, MEMBER.next)))

the pre-processor turns that into:

free_block *q = (struct free_block *)
((unit8_t*)&p->next –
offsetof(struct free_block, elem.next)));

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

P0 Discussion

Operating Systems

10Project 0: concurrency issues

Remember the purpose of this assignment is to implement (or at least simulate)
the operation of a very simple memory allocator in an operating system.

Modern OS designs provide for multitasking, and perhaps even true concurrency.

That means that the implementation of the memory manager must be "thread-
safe".

That is, it is entirely possible that a user process P may call mem_alloc() to
request memory, but that P may be temporarily suspended and another user
process Q allowed to run before P's call to mem_alloc() has completed.

Consider the implications…
What if the interruption occurs while mem_alloc() is choosing a free block to
use? or during the execution of one of the list functions called by
mem_alloc()?

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

P0 Discussion

Operating Systems

11Project 0: critical sections

A critical section is a code segment in which a process is accessing, especially
modifying, shared data.

static int counter = 0; // a global variable to protect

// function executed by each thread
void increment() {

int i;
for (i = 0; i < 1000000; i++) {

// critical section begins
counter++;
// critical section ends

}
}

For example, consider what might happen if we have two or more processes in
the following situation:

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

P0 Discussion

Operating Systems

12Project 0: mutual exclusion

What we need is a way to specify, in code, that only one process is allowed to
enter a block of code at any given time:

// function executed by each thread
void increment() {

int i;
for (i = 0; i < 1000000; i++) {

set_lock(); // atomic operation
counter++;
unset_lock();

}
}

Alas, the C Standard Library doesn't provide such functions.

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

P0 Discussion

Operating Systems

13Project 0: pthread mutexes

The pthread (Posix thread) library provides one solution:

// function executed by each thread
void increment() {

int i;
for (i = 0; i < 1000000; i++) {

pthread_mutex_lock(&lock);
counter++;
pthread_mutex_unlock(&lock);

}
}

The user code now must set and unset the lock at the appropriate places:

// global declaration:
static pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

P0 Discussion

Operating Systems

14Project 0: general comments

Read carefully before you write too much code:
- list.h and list.c
- memalloc.h
- test_mem.c

You might want to comment out some of the tests at first, and perhaps even
modify the given test code to get a feel for what's going on.

We will test your solution with the original code though.

Most of your work will go into writing memalloc.c to implement the
functions declared in memalloc.h.

The given test code shows some examples of how to use the pthread library to
spawn off multiple threads executing the same function; interesting but not
relevant to your own code.

