
Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

1Files vs Disks

File Abstraction
Byte oriented
Names
Access protection
Consistency guarantees

Disk Abstraction
Block oriented
Block #s
No protection
No guarantees beyond block write

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

2Filesystem Requirements

Naming
– Should be flexible, e.g., allow multiple names for same files
– Support hierarchy for easy of use

Persistence
– Want to be sure data has been written to disk in case crash occurs

Sharing/Protection
– Want to restrict who has access to files
– Want to share files with other users

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

3FS Requirements (cont’d)

Speed & Efficiency for different access patterns
– Sequential access
– Random access
– Sequential is most common & Random next
– Other pattern is Keyed access (not usually provided by OS)

Minimum Space Overhead
– Disk space needed to store metadata is lost for user data

Twist: all metadata that is required to do translation must be stored on disk
– Translation scheme should minimize number of additional accesses for a given access

pattern
– Harder than, say page tables where we assumed page tables themselves are not subject to

paging!

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

4Overview

File Operations:
create(), unlink(), open(),

read(), write(), close()

Buffer Cache

Device Driver

File System

• Uses names for files
• Views files as
sequence of bytes

Uses disk id + sector
indices

Must implement translation
(file name, file offset) →
(disk id, disk sector, sector offset)

Must manage free space on disk

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

5The Big Picture

PCBPCB

…
5
4
3
2
1
0

…
5
4
3
2
1
0

Data structures to keep
track of open files

struct file
inode + position + …

struct dir
inode + position

struct inode

Data structures to keep
track of open files

struct file
inode + position + …

struct dir
inode + position

struct inode

Per-process
file descriptor
table

B
uffer C

ache
B

uffer C
ache

Open file table
Filesystem
Information

File Descriptors
(inodes)

Directory
Data

File Data

Cached data and
metadata in buffer
cache

On-Disk
Data Structures

?

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

6Steps in Opening & Reading a File

Lookup (via directory)
– find on-disk file descriptor’s block number

Find entry in open file table (struct inode list in Pintos)
– Create one if none, else increment ref count

Find where file data is located
– By reading on-disk file descriptor

Read data & return to user

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

7Open File Table

inode – represents file
– at most 1 in-memory instance per unique file
– #number of openers & other properties

file – represents one or more processes using an file
– With separate offsets for byte-stream

dir – represents an open directory file

Generally:
– None of data in OFT is persistent
– Reflects how processes are currently using files
– Lifetime of objects determined by open/close

Reference counting is used

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

8File Descriptors (“inodes”)

Term “inode” can refer to 3 things:
1. in-memory inode

– Store information about an open file, such as how many openers, corresponds to on-
disk file descriptor

2. on-disk inode
– Region on disk, entry in file descriptor table, that stores persistent information about

a file – who owns it, where to find its data blocks, etc.
3. on-disk inode, when cached in buffer cache

– A bytewise copy of 2. in memory

Q.: Should in-memory inode store a pointer to cached on-disk inode? (Answer:
No.)

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

9Filesystem Information

Contains “superblock”
stores information such as
size of entire filesystem, etc.

– Location of file descriptor table & free map

Free Block Map
– Bitmap used to find free blocks
– Typically cached in memory

Superblock & free map often replicated in different positions on disk

Free Block Map
0100011110101010101

Super Block

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

10File Allocation Strategies

Contiguous allocation

Linked files

Indexed files

Multi-level indexed files

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

11Contiguous Allocation

Idea: allocate files in contiguous blocks

File Descriptor = (first block, length)

Good sequential & random access

Problems:
– hard to extend files – may require expensive compaction
– external fragmentation
– analogous to segmentation-based VM

Pintos’s baseline implementation does this

File A File B

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

12Linked Files

Idea: implement linked list
– either with variable sized blocks
– or fixed sized blocks (“clusters”)

Solves fragmentation problem, but now
– need lots of seeks for sequential accesses and random accesses
– unreliable: lose first block, may lose file

Solution: keep linked list in memory
– DOS: FAT File Allocation Table

File A
Part 1

File B
Part 1

File A
Part 2

File B
Part 2

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

13DOS FAT
FAT stored at beginning of disk & replicated for

redundancy

FAT cached in memory

Size: n-bit entries, m-bit blocks → 2^(m+n) limit
– n=12, 16, 28
– m=9 … 15 (0.5KB-32KB)

As disk size grows, m & n must grow
– Growth of n means larger in-memory table

1012

-111

910

-19

08

117

-16

75

-14

53

02

61

1

3

4

2

Length First BlockFilename

4

12

3

1

“d”

“c”

“b”

“a”

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

14Blocksize Trade-Offs

Assume all files are 2KB in size (observed median filesz is about 2KB)
– Larger blocks: faster reads (because seeks are amortized & more bytes per transfer)
– More wastage (2KB file in 32KB block means 15/16th are unused)

Source: Tanenbaum, Modern Operating Systems

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

15Indexed Allocation

Single-index: specify maximum filesize, create index array, then note blocks in
index

– Random access ok – one translation step
– Sequential access requires more seeks – depending on contiguous allocation

Drawback: hard to grow beyond maximum

File A
Part 1

File A
Part 2

File A
Index

File A
Part 3

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

16Multi-Level Indices

Used in Unix & Pintos (P4)

1
2
3
..
N

FLI
SLI
TLI

1

2

index

N

index2

index

index

N+IN+1

N+I+1

index3 index2

Direct
Blocks

Indirect
Block

Double
Indirect
Block

Triple
Indirect
Block index

N+I+I2

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

17Multi-Level Indices

If filesz < N * BLKSIZE, can store all information in direct block array
– Biased in favor of small files (ok because most files are small…)

Assume index block stores I entries
– If filesz < (I + N) * BLKSIZE, 1 indirect block suffices

Q.: What’s the maximum size before we need triple-indirect block?

Q.: What’s the per-file overhead (best case, worst case?)

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

18

34350 1 2 3 4 5 6 7 121314 2021 2728

Logical View (Per File) offset in file

Physical View (On Disk) (ignoring other files)

Inode

Data

Index

Index2

sector numbers on disk

View

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

19

34350 1 2 3 4 5 6 7 121314 2021 2728

Logical View (Per File) offset in file

Physical View (On Disk) (ignoring other files)

Inode

Data

Index

Index2

sector numbers on disk

…
5

12

4
3
2
1

…
10
11

9
8
7
6

…
-1
-1

34
27
20
13

…
18
19

17
16
15
14

Details

