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1Files vs Disks

File Abstraction
Byte oriented
Names
Access protection
Consistency guarantees

Disk Abstraction
Block oriented
Block #s
No protection
No guarantees beyond block write
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2Filesystem Requirements

Naming
– Should be flexible, e.g., allow multiple names for same files
– Support hierarchy for easy of use

Persistence
– Want to be sure data has been written to disk in case crash occurs

Sharing/Protection
– Want to restrict who has access to files
– Want to share files with other users
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3FS Requirements (cont’d)

Speed & Efficiency for different access patterns
– Sequential access
– Random access
– Sequential is most common & Random next
– Other pattern is Keyed access (not usually provided by OS)

Minimum Space Overhead
– Disk space needed to store metadata is lost for user data

Twist: all metadata that is required to do translation must be stored on disk
– Translation scheme should minimize number of additional accesses for a given access 

pattern
– Harder than, say page tables where we assumed page tables themselves are not subject to 

paging!



Computer Science Dept Va Tech August 2007 ©2007  Back

Disk Systems

Operating Systems

4Overview

File Operations: 
create(), unlink(), open(),

read(), write(), close()

Buffer Cache

Device Driver

File System

• Uses names for files
• Views files as 
sequence of bytes

Uses disk id + sector 
indices

Must implement translation 
(file name, file offset) →
(disk id, disk sector, sector offset)

Must manage free space on disk
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5The Big Picture
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Data structures to keep 
track of open files

struct file
inode + position + …

struct dir
inode + position

struct inode

Data structures to keep 
track of open files

struct file
inode + position + …

struct dir
inode + position

struct inode

Per-process 
file descriptor 
table

B
uffer C

ache
B

uffer C
ache

Open file table
Filesystem
Information

File Descriptors
(inodes)

Directory
Data

File Data

Cached data and 
metadata in buffer 
cache

On-Disk
Data Structures

?
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6Steps in Opening & Reading a File

Lookup (via directory)
– find on-disk file descriptor’s block number

Find entry in open file table (struct inode list in Pintos)
– Create one if none, else increment ref count

Find where file data is located
– By reading on-disk file descriptor

Read data & return to user
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7Open File Table

inode – represents file
– at most 1 in-memory instance per unique file
– #number of openers & other properties

file – represents one or more processes using an file
– With separate offsets for byte-stream

dir – represents an open directory file

Generally:
– None of data in OFT is persistent
– Reflects how processes are currently using files
– Lifetime of objects determined by open/close

Reference counting is used
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8File Descriptors (“inodes”)

Term “inode” can refer to 3 things:
1. in-memory inode

– Store information about an open file, such as how many openers, corresponds to on-
disk file descriptor

2. on-disk inode
– Region on disk, entry in file descriptor table, that stores persistent information about 

a file – who owns it, where to find its data blocks, etc.
3. on-disk inode, when cached in buffer cache

– A bytewise copy of 2. in memory

Q.: Should in-memory inode store a pointer to cached on-disk inode? (Answer: 
No.)
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9Filesystem Information

Contains “superblock”
stores information such as
size of entire filesystem, etc.

– Location of file descriptor table & free map

Free Block Map
– Bitmap used to find free blocks
– Typically cached in memory

Superblock & free map often replicated in different positions on disk

Free Block Map
0100011110101010101

Super Block
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10File Allocation Strategies

Contiguous allocation

Linked files

Indexed files

Multi-level indexed files
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11Contiguous Allocation

Idea: allocate files in contiguous blocks

File Descriptor = (first block, length)

Good sequential & random access

Problems: 
– hard to extend files – may require expensive compaction
– external fragmentation
– analogous to segmentation-based VM

Pintos’s baseline implementation does this

File A File B
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12Linked Files

Idea: implement linked list 
– either with variable sized blocks
– or fixed sized blocks (“clusters”)

Solves fragmentation problem, but now
– need lots of seeks for sequential accesses and random accesses
– unreliable: lose first block, may lose file

Solution: keep linked list in memory
– DOS: FAT File Allocation Table

File A
Part 1

File B
Part 1

File A
Part 2

File B
Part 2
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13DOS FAT
FAT stored at beginning of disk & replicated for 

redundancy

FAT cached in memory

Size: n-bit entries, m-bit blocks → 2^(m+n) limit
– n=12, 16, 28
– m=9 … 15 (0.5KB-32KB)

As disk size grows, m & n must grow
– Growth of n means larger in-memory table
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14Blocksize Trade-Offs

Assume all files are 2KB in size (observed median filesz is about 2KB)
– Larger blocks: faster reads (because seeks are amortized & more bytes per transfer)
– More wastage (2KB file in 32KB block means 15/16th are unused)

Source: Tanenbaum, Modern Operating Systems
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15Indexed Allocation

Single-index: specify maximum filesize, create index array, then note blocks in 
index

– Random access ok – one translation step
– Sequential access requires more seeks – depending on contiguous allocation

Drawback: hard to grow beyond maximum

File A
Part 1

File A
Part 2

File A
Index

File A
Part 3
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16Multi-Level Indices

Used in Unix & Pintos (P4)
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Blocks

Indirect
Block

Double
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17Multi-Level Indices

If filesz < N * BLKSIZE, can store all information in direct block array
– Biased in favor of small files (ok because most files are small…)

Assume index block stores I entries
– If filesz < (I + N) * BLKSIZE, 1 indirect block suffices

Q.: What’s the maximum size before we need triple-indirect block?

Q.: What’s the per-file overhead (best case, worst case?)
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18

34350 1 2 3 4 5 6 7 121314 2021 2728

Logical View (Per File) offset in file

Physical View (On Disk) (ignoring other files)

Inode

Data

Index

Index2

sector numbers on disk

View
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Logical View (Per File) offset in file

Physical View (On Disk) (ignoring other files)

Inode

Data

Index

Index2

sector numbers on disk
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