W Today: what you need to know for Project 2

Compiling, Linking, Loading
Where are my variables?
How are programs loaded into memory?

Virtual Memory Basics
How do addresses get checked and how do they get mapped?
What happens on a context-switch?

Operating Systems

Link/Load 1

I Accessing Information Link/Load 2

All information a program reads/writes is stored somewhere in memory

Programmer uses symbolic names:
local variables, global variables, assembly constants

CPU instructions use virtual addresses:
absolute addresses (at 0xC0000024)
relative addresses (at $esp — 16)

Actual memory uses physical addresses:

Big Question: who does the translation & when?

Operating Systems

M The Big Picture Link/Load 3

.h Header File 1 .h Header File 2 .h Header File 3

A 4 A 4 A 4 A 4

Compile Time Program Code Program Code } Preprocessor
.c/.cc Source File 1 .c/.cc Source File 2
! y | Compiler
Assembly Code Assembly Code
S File 1 .S File 2
""""" Y Y | Assembler
y Object Code Object Code
L' T . . RN
ink Time .0 File 1 \‘ / .0 File 2 | Linker \ /

“““““ Executable Programl Executable Program?2
Load Time X X | Loader
—————————— Processl Process2 Process3
Run Time ” . . | MMU

Physical RAM (physically addressed)

Operating Systems

I Step 1: Compilation

Link/Load
.data
initialized_variable:
dong 1

int initialized_variable = 1

—

int zero_initialized_variable;

<
<

.comm zero_initialized_variable,4,4

int global function(int argument)

{

volatile int local varlable =
return argument

+ local_variable

+ initialized_variabl

+ zero_initialized _variab
}

global_function:
pushl %ebp

whereismystuff.c

movl %esp, %ebp

subl $16, %esp
. movl $1, -4(%ebp) /* local_variable */

__movl -4(%ebp), Y%eax

addl 8(%ebp), Y%eax /* argument */

"~ addl Initialized variable, %eax
\ addl zero initialized variable, %eax
\ leave

ret

whereismystuff.s

Compiler resolves

local variable names (and struct field offsets!)

Operating Systems

Step 2: Assembly

movl
subl
movl
movl
add|
add|

global_function:
pushl %ebp
%esp, Y%ebp
$16, Yesp
$1, -4(%ebp)
-4(%ebp), Y%eax
8(%ebp), %eax /* argumgnt
initialized_variable, %ea

/[* local_vari;

Link/Load 5
RELOCATION RECORDS FOR [.text]:
OFFSET TYPE VALUE
00000015 R_386 32 initialized_variable

0000001b R_386_32 zero_initialized_variable

Contents of section .data:
0000 01000000

1f:
20:

55
89
83
c/
8b
03
03
03
c9
c3

eb
ec 10
45
45
45
05
05

00000000 <global functyon>:
O:
1:
3:
. 6:
d:
10:
13:
19:

push Aebp

%esp,%ebp

$0x10,%esp

$0x1, OxFFFFFffc(%ebp)
OxXFFFfrfrffc(%ebp) ,%eax

Ox8 (%ebp) , %heax

Ox0,%eax /I initialized variable
Ox0,%eax // zero_initialized_variable
leave

ret

whereismystuff.o

Operating Systems

Step 3: Linking

Link/Load

6

55
89
83
c/
8b
03
03
03
c9
c3

eb
ec
45
45
45
05
05

0804837c <global function>:
804837c:
804837d:
804837T:
8048382:
8048389:
804838c:
804838f:
8048395:
804839Db:
804839c:

10
fc 01 00 00
fc
08
80 95 04 08
88 95 04 08

push
mov
sub
00 mov |
mov
add
add
add
leave
ret

%ebp

%esp ,%ebp

$0x10,%esp

$0x1 , OxFFFFFffc(%ebp)
OxFFFfrfrffc(%ebp) ,%eax
Ox8 (%ebp) , %heax
0x8049580, %eax
0x8049588 , %heax

whereismystuff (.exe)

Linker resolves global addresses, stores instructions for loader in executable
Key: linker links multiple, independently assembled .o files into executable
Must decide on layout & then assign addresses & relocate

Operating Systems

I Step 4: Loading (Conceptual) Link/Load 7

Picture compiler & linker had in

ELF Header: mind when building executable
-start address 0x080482d8 oo EEETE SETTETE
BSS:
- size & start of zero initialized data
(B]taestas:of section .data:) MAX—VIRTUAL
8049574 00000000 00600006 88940408 01000000 & oo oo oo e e
\

S Stack } stack segment
0804837¢ <global_functions: room for stack to grow

v for stack to g
804837c: 55 push %ebp
803837i5 89 e5 mov %esp,%fbp T
e G LG D el o - room for heap to grow
8048389: 8b 45 fc mov OxFFFFfrffc(%ebp) ,%e
804838c: 03 45 08 add Ox8(%ebp),%eax Heap
804838f: 03 05 80 95 04 08 add 0x8049580 , %heax

8048395: 03 05 88 95 04 08 add 0x8049588 , %eax
804839b: c9 leave

804839c: c3 ret \ \
\)
Executable = set of instructions stored on disk Code _;\Code segment

BSS | data segment

for loader
consists of sections

start program here

0

Operating Systems

2 Virtual Memory & Paging (Simplified) Link/Load 8

—
MAX_VIRTUAL 1

. MAX_PHYSICAL
<+
0..2%2-1 range
range depends
depends on on
processor how
architecture much
RAM

IA32: you
sizeof(void*)=4 bought

pages

frames
Maps virtual addresses to physical addresses (indirection)

~ X86: page table is called page directory (one per process)

~mapping at page granularity (x86: 1 page = 4 KB = 4,096 bytes)

Computer Science Dept Va Tech August 2007 Operating Systems ©2003-07 Back

B Step 5: Loading (For Real)

Link/Load 9

FFFFFFFF,

L

7~

0400000

1 GB

<«

C0000000_,

a2

3 GB

v

0

—

Computer Science Dept Va Tech August 2007

P1

kernel heap

~kernel bss

N kernel data
kernel code

—

after Pin

DOOLS,; ©

—physiakseamaystamiagpeett st
—COFRHEEEAPED

“paseiscaldeady used by kernel

><><

('«

- part is free (but mapped)

Operating Systems

used

©2003-07 Back

B Step 5: Loading (2" Process)

Link/Load 10

Computer Science Dept Va Tech August 2007

FFFFFFFF
P2
C0400000
m
Q)
- To load a second process,
Pintos creates a new page
table
- clone boot page table
- then add entries ... =
C0000000_, ™ ><2
s | — user stack “
‘
<>
m
Q)
™
user data + bss
0 * = user code

Operating Systems

used

©2003-07 Back

I Context Switching Link/Load 11

Each process has its own address space

This means that the meaning of addresses (say 0x08c4000) may be different depending on
which process is active

Maps to different page in physical memory

When processes switch, address spaces must switch
MMU must be reprogrammed

Operating Systems

™ Process 1 Active

Link/Load 12

F

C

FFFFFFF.

0400000

1 GB

0000000

»

»

\

<«

P1

Computer Science Dept Va Tech August 2007

Operating Systems

used

©2003-07 Back

™ Process 2 Active Link/Load 13

FFFFFFFF £
P2
C0400000 -
access requires kernel mode
m
Q)
—i
C0000000_, ‘
O
. used
| access possible in user mode
O —

Computer Science Dept Va Tech August 2007 Operating Systems ©2003-07 Back

I Context Switching Link/Load 14

Process 1

Process 2 - - ;

user mode B B B .
kernel mode | » B |

Kernel — o — —

Computer Science Dept Va Tech August 2007 Operating Systems ©2003-07 Back

. Process 1 Active In user mode Link/Load 15
FFFFFFFF .

»

»

C0400000

1GB

C0000000 '

—

used

 ——

access possible in user mode

Computer Science Dept Va Tech August 2007 Operating Systems ©2003-07 Back

. Process 1 Active In kernel mode Link/Load 16

FFFFFFFF
C0400000
m accacce ranijires kernel mode
O Context Switch
= schedule tail() calls process_activate:
o A
process_activate (void)
A 4 {
C0000000_, struct thread *t = thread_current (); d
A ustack (1) -
[* Activate thread's page tables. */ d
m pagedir_activate (t->pagedir); /
c(?) } | used
S o y
| [ucode(d) access possible in user mode
0

—

Computer Science Dept Va Tech August 2007 Operating Systems ©2003-07 Back

. Process 2 Active in kernel mode Link/Load 17

FFFFFFFF £
P2
C0400000
m access requires kernel mode
Q)
—i
C0000000_, ‘
m
g used
| access possible in user mode
O —

Computer Science Dept Va Tech August 2007 Operating Systems ©2003-07 Back

. Process 2 Active in user mode Link/Load 18

F

C

FFFFFFF £

0400000

1 GB

0000000

\

—

used

 ——

access possible in user mode

Computer Science Dept Va Tech August 2007 Operating Systems ©2003-07 Back

Summary Link/Load 19

All you have to do in Project 2/3/4 is:

Be aware of what memory is currently accessible

Your kernel executes in kernel mode, so you can access all memory (if you use >C000000
addresses)

But you must set it up such that your programs can run with the memory you allow them to access
(at <C0000000)

Don’t let user programs fool you into accessing other processes’ (or arbitrary kernel)
memory

Kill them if they try

Keep track of where stuff is

Virtually (toolchain’s view):
below C0000000 (PHYS_BASE) user space
above C0000000 (PHYS_BASE) kernel space

Physically (note: “physical” addresses are represented as 0OxC0000000 + phys_addr in
Pintos b/c of permanent mapping)

Operating Systems

