
Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Synchronization

Operating Systems

1Rendezvous

A needs to be sure B has advanced to point L, B needs to be sure A has advanced to L

semaphore A_madeit(0);

A_rendezvous_with_B()
{
sema_up(A_madeit);
sema_down(B_madeit);

}

semaphore A_madeit(0);

A_rendezvous_with_B()
{
sema_up(A_madeit);
sema_down(B_madeit);

}

semaphore B_madeit(0);

B_rendezvous_with_A()
{
sema_up(B_madeit);
sema_down(A_madeit);

}

semaphore B_madeit(0);

B_rendezvous_with_A()
{
sema_up(B_madeit);
sema_down(A_madeit);

}

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Synchronization

Operating Systems

2Waiting for an activity to finish

Works no matter which thread is scheduled first after thread_create (parent or child)

Elegant solution that avoids the need to share a “have done task” flag between parent &
child

Two applications of this technique in Pintos Project 2
– signal successful process startup (“exec”) to parent
– signal process completion (“exit”) to parent

semaphore done_with_task(0);
thread_create(

do_task,
(void*)&done_with_task);

sema_down(done_with_task);
// safely access task’s results

semaphore done_with_task(0);
thread_create(

do_task,
(void*)&done_with_task);

sema_down(done_with_task);
// safely access task’s results

void
do_task(void *arg)
{

semaphore *s = arg;
/* do the task */
sema_up(*s);

}

void
do_task(void *arg)
{

semaphore *s = arg;
/* do the task */
sema_up(*s);

}

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Synchronization

Operating Systems

3Condition Variables

Variables used by a monitor for signaling a condition
– a general (programmer-defined) condition, not just integer increment as with semaphores
– The actual condition is typically some boolean predicate of monitor variables, e.g.

“buffer.size > 0”

Monitor can have more than one condition variable

Three operations:
– Wait(): leave monitor, wait for condition to be signaled, reenter monitor
– Signal(): signal one thread waiting on condition
– Broadcast(): signal all threads waiting on condition

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Synchronization

Operating Systems

4Implementing Condition Variables

State is just a queue of waiters:
– Wait(): adds current thread to (end of queue) & block
– Signal(): pick one thread from queue & unblock it

Hoare-style Monitors: gives lock directly to waiter
Mesa-style monitors (C, Pintos, Java): signaler keeps lock – waiter gets READY, but can’t enter
until signaler gives up lock

– Broadcast(): unblock all threads

Compare to semaphores:
– Condition variable signals are lost if nobody’s on the queue (semaphore’s V() are

remembered)
– Condition variable wait() always blocks (semaphore’s P() may or may not block)

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Synchronization

Operating Systems

5Monitors

A monitor combines a set of shared variables & operations to access them
– Think of an enhanced C++ class with no public fields

A monitor provides implicit synchronization (only one thread can access private variables
simultaneously)

– Single lock is used to ensure all code associated with monitor is within critical section

A monitor provides a general signaling facility
– Wait/Signal pattern (similar to, but different from semaphores)
– May declare & maintain multiple signaling queues

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Synchronization

Operating Systems

6Monitors (cont’d)

Classic monitors are embedded in programming language
– Invented by Hoare & Brinch-Hansen 1972/73
– First used in Mesa/Cedar System @ Xerox PARC 1978
– Limited version available in Java/C#

(Classic) Monitors are safer than semaphores
– can’t forget to lock data – compiler checks this

In contemporary C, monitors are a synchronization pattern that is achieved using locks &
condition variables

– Must understand monitor abstraction to use it

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Synchronization

Operating Systems

7Infinite Buffer w/ Monitor

monitor buffer {
/* implied: struct lock

mlock;*/
private:

char buffer[];
int head, tail;

public:
produce(item);
item consume();

}

monitor buffer {
/* implied: struct lock

mlock;*/
private:

char buffer[];
int head, tail;

public:
produce(item);
item consume();

}

buffer::produce(item i)
{ /* try { lock_acquire(&mlock); */

buffer[head++] = i;
/* } finally {lock_release(&mlock);} */

}

buffer::consume()
{ /* try { lock_acquire(&mlock); */

return buffer[tail++];
/* } finally {lock_release(&mlock);}

*/
}

buffer::produce(item i)
{ /* try { lock_acquire(&mlock); */

buffer[head++] = i;
/* } finally {lock_release(&mlock);} */

}

buffer::consume()
{ /* try { lock_acquire(&mlock); */

return buffer[tail++];
/* } finally {lock_release(&mlock);}

*/
}

Monitors provide implicit protection for their internal variables
– Still need to add the signaling part

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Synchronization

Operating Systems

8Bounded Buffer w/ Monitor

monitor buffer {
condition items_avail;
condition slots_avail;

private:
char buffer[];
int head, tail;

public:
produce(item);
item consume();

}

monitor buffer {
condition items_avail;
condition slots_avail;

private:
char buffer[];
int head, tail;

public:
produce(item);
item consume();

}

buffer::produce(item i)
{
while ((tail+1–head)%CAPACITY==0)

slots_avail.wait();
buffer[head++] = i;
items_avail.signal();

}
buffer::consume()
{

while (head == tail)
items_avail.wait();

item i = buffer[tail++];
slots_avail.signal();
return i;

}

buffer::produce(item i)
{
while ((tail+1–head)%CAPACITY==0)

slots_avail.wait();
buffer[head++] = i;
items_avail.signal();

}
buffer::consume()
{

while (head == tail)
items_avail.wait();

item i = buffer[tail++];
slots_avail.signal();
return i;

}

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Synchronization

Operating Systems

9Bounded Buffer w/ Monitor

monitor buffer {
condition items_avail;
condition slots_avail;

private:
char buffer[];
int head, tail;

public:
produce(item);
item consume();

}

monitor buffer {
condition items_avail;
condition slots_avail;

private:
char buffer[];
int head, tail;

public:
produce(item);
item consume();

}

buffer::produce(item i)
{
while ((tail+1–head)%CAPACITY==0)

slots_avail.wait();
buffer[head++] = i;
items_avail.signal();

}
buffer::consume()
{

while (head == tail)
items_avail.wait();

item i = buffer[tail++];
slots_avail.signal();
return i;

}

buffer::produce(item i)
{
while ((tail+1–head)%CAPACITY==0)

slots_avail.wait();
buffer[head++] = i;
items_avail.signal();

}
buffer::consume()
{

while (head == tail)
items_avail.wait();

item i = buffer[tail++];
slots_avail.signal();
return i;

}
Q1.: How is lost update problem
avoided?

Q2.: Why while() and not if()?

lock_release(&mlock);
block_on(items_avail);
lock_acquire(&mlock);

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Synchronization

Operating Systems

10Monitors in C

POSIX Threads & Pintos

No compiler support, must do it manually
– must declare locks & condition vars
– must call lock_acquire/lock_release when entering&leaving the monitor
– must use cond_wait/cond_signal to wait for/signal condition

Note: cond_wait(&c, &m) takes monitor lock as parameter
– necessary so monitor can be left & reentered without losing signals

Pintos cond_signal() takes lock as well
– only as debugging help/assertion to check lock is held when signaling
– pthread_cond_signal() does not

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Synchronization

Operating Systems

11Mesa vs Hoare Style

Mesa-style:
– Cond_signal leaves signaling thread in monitor
– so must always use “while()” when checking loop condition
– POSIX Threads & Pintos are Mesa-style (and so are C# & Java)

Alternative is “Hoare”-style where cond_signal leads to exit from monitor and immediate
reentry of waiter

– Not commonly used

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Synchronization

Operating Systems

12Monitors in Java

synchronized block means
– enter monitor
– execute block
– leave monitor

wait()/notify() use condition variable
associated with receiver

– Every object in Java can function
as a condition var

class buffer {
private char buffer[];
private int head, tail;
public synchronized produce(item i) {

while (buffer_full())
this.wait();

buffer[head++] = i;
this.notify();

}
public synchronized item consume() {

while (buffer_empty())
this.wait();

buffer[tail++] = i;
this.notify();

}
}

class buffer {
private char buffer[];
private int head, tail;
public synchronized produce(item i) {

while (buffer_full())
this.wait();

buffer[head++] = i;
this.notify();

}
public synchronized item consume() {

while (buffer_empty())
this.wait();

buffer[tail++] = i;
this.notify();

}
}

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Synchronization

Operating Systems

13Per Brinch Hansen’s Criticism

See Java’s Insecure Parallelism [Brinch Hansen 1999]

Says Java abused concept of monitors because Java does not require all accesses to
shared variables to be within monitors

Why did designers of Java not follow his lead?
– Performance: compiler can’t easily decide if object is local or not - conservatively, would

have to make all public methods synchronized – pay at least cost of atomic instruction on
entering every time

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Synchronization

Operating Systems

14High vs Low Level Synchronization

As we’ve seen, bounded buffer can be solved with higher-level synchronization
primitives

– semaphores and monitors

In Pintos kernel, one could also use thread_block/unblock directly
– this is not always efficiently possible in other concurrent environments

Q.: when should you use low-level synchronization (a la thread_block/thread_unblock)
and when should you prefer higher-level synchronization?

A.: Except for the simplest scenarios, higher-level synchronization abstractions are
always preferable

– They’re well understood; make it possible to reason about code.

