Rules for Easy Locking Synchronization

Every shared variable must be protected by a lock
One lock may protect more than one variable, but not too many
Acquire lock before touching (reading or writing) variable
Release when done, on all paths

If manipulating multiple variables, acquire locks protecting each

Acquire locks always in same order (doesn’t matter which order, but must be
same)

Release in opposite order
Don’t mix acquires & release (two-phase locking)

Operating Systems



Infinite Buffer Problem

Synchronization

producer(item)

{
lock_acquire(buffer);
buffer[head++] = item;
lock_release(buffer);

}

Trying to implement infinite buffer problem with locks alone leads to a very inefficient

solution (busy waiting!)

}

consumer()
{
lock _acquire(buffer);
while (buffer is empty) {
lock_release(buffer);
thread_yield();
lock _acquire(buffer);
}
item = buffer[tail++];
lock_release(buffer);
return item

Locks cannot express precedence constraint: A must happen before B.

Operating Systems




Infinite Buffer Problem, Take 2 Synchronization

producer(item) consumer()
{ {
lock_acquire(buffer); lock_acquire(buffer);
buffer[head++] = item;'\ while (buffer is empty) {
If (#consumers > 0) \\ lock_release(buffer);
for ¢ in consumers { _~" consumers.add(current);
thread_unblock(c); ] thread_block(current);
} lock_acquire(buffer);
lock_release(buffer); }
} item = buffer[tail++];
lock_release(buffer);
return item

Context switch here would cause

Lost Wakeup problem: producer will put item
in buffer, but won’t unblock consumer thread
(since consumer thread isn’t in consumers

yet)

Operating Systems



Infinite Buffer Problem, Take 3 Synchronization

producer(item) consumer()
{ {
lock_acquire(buffer); lock_acquire(buffer);
buffer[head++] = item; while (buffer is empty) {
If (#consumers > 0) consumers.add(current);
for ¢ in consumers { lock_release(buffer);
thread_unblock(c); thread_block(current);
} lock_acquire(buffer);
lock_release(buffer); }

} item = buffer[tail++];
lock_release(buffer);
return item

}

What if consumers.add is done before lock is released?

Operating Systems



Infinite Buffer Problem, Take 4 Synchronization

producer(item) consumer()
{ {
lock_acquire(buffer); lock_acquire(buffer);
buffer[head++] = item; while (buffer is empty) {
If (#consumers > 0) consumers.add(current);
for ¢ in consumers { lock_release(buffer);
thread_unblock(c); thread_block(current);
} lock_acquire(buffer);
lock_release(buffer); }

} item = buffer[tail++];
lock_release(buffer);
return item

}

This is correct, but complicated and very easy to get wrong
Want abstraction that does not require direct block/unblock call

Operating Systems



Low-level vs. High-level Synchronization Synchronization 6

Low-level synchronization primitives:
Disabling preemption, (Blocking) Locks, Spinlocks
implement mutual exclusion

Implementing precedence constraints directly via thread _unblock/thread_block is
problematic because

It’s complicated (see last slides)
It may violate encapsulation from a software engineering perspective
You may not have that access at all (unprivileged code!)

We need well-understood higher-level constructs
Semaphores
Monitors

Operating Systems



