
Synchronization

Operating Systems

1

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Rules for Easy Locking

Every shared variable must be protected by a lock
– One lock may protect more than one variable, but not too many
– Acquire lock before touching (reading or writing) variable
– Release when done, on all paths

If manipulating multiple variables, acquire locks protecting each
– Acquire locks always in same order (doesn’t matter which order, but must be

same)
– Release in opposite order
– Don’t mix acquires & release (two-phase locking)

Synchronization

Operating Systems

2

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Infinite Buffer Problem

producer(item)
{
lock_acquire(buffer);
buffer[head++] = item;
lock_release(buffer);

}

producer(item)
{
lock_acquire(buffer);
buffer[head++] = item;
lock_release(buffer);

}

consumer()
{

lock_acquire(buffer);
while (buffer is empty) {

lock_release(buffer);
thread_yield();
lock_acquire(buffer);

}
item = buffer[tail++];
lock_release(buffer);
return item

}

consumer()
{

lock_acquire(buffer);
while (buffer is empty) {

lock_release(buffer);
thread_yield();
lock_acquire(buffer);

}
item = buffer[tail++];
lock_release(buffer);
return item

}

Trying to implement infinite buffer problem with locks alone leads to a very inefficient
solution (busy waiting!)

Locks cannot express precedence constraint: A must happen before B.

Synchronization

Operating Systems

3

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Infinite Buffer Problem, Take 2

producer(item)
{
lock_acquire(buffer);
buffer[head++] = item;
if (#consumers > 0)

for c in consumers {
thread_unblock(c);

}
lock_release(buffer);

}

producer(item)
{
lock_acquire(buffer);
buffer[head++] = item;
if (#consumers > 0)

for c in consumers {
thread_unblock(c);

}
lock_release(buffer);

}

consumer()
{

lock_acquire(buffer);
while (buffer is empty) {

lock_release(buffer);
consumers.add(current);
thread_block(current);
lock_acquire(buffer);

}
item = buffer[tail++];
lock_release(buffer);
return item

}

consumer()
{

lock_acquire(buffer);
while (buffer is empty) {

lock_release(buffer);
consumers.add(current);
thread_block(current);
lock_acquire(buffer);

}
item = buffer[tail++];
lock_release(buffer);
return item

}Context switch here would cause
Lost Wakeup problem: producer will put item
in buffer, but won’t unblock consumer thread
(since consumer thread isn’t in consumers
yet)

Context switch here would cause
Lost Wakeup problem: producer will put item
in buffer, but won’t unblock consumer thread
(since consumer thread isn’t in consumers
yet)

Synchronization

Operating Systems

4

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Infinite Buffer Problem, Take 3

producer(item)
{
lock_acquire(buffer);
buffer[head++] = item;
if (#consumers > 0)

for c in consumers {
thread_unblock(c);

}
lock_release(buffer);

}

producer(item)
{
lock_acquire(buffer);
buffer[head++] = item;
if (#consumers > 0)

for c in consumers {
thread_unblock(c);

}
lock_release(buffer);

}

consumer()
{

lock_acquire(buffer);
while (buffer is empty) {

lock_release(buffer);
consumers.add(current);
thread_block(current);
lock_acquire(buffer);

}
item = buffer[tail++];
lock_release(buffer);
return item

}

consumer()
{

lock_acquire(buffer);
while (buffer is empty) {

lock_release(buffer);
consumers.add(current);
thread_block(current);
lock_acquire(buffer);

}
item = buffer[tail++];
lock_release(buffer);
return item

}

What if consumers.add is done before lock is released?

consumer()
{

lock_acquire(buffer);
while (buffer is empty) {

consumers.add(current);
lock_release(buffer);
thread_block(current);
lock_acquire(buffer);

}
item = buffer[tail++];
lock_release(buffer);
return item

}

consumer()
{

lock_acquire(buffer);
while (buffer is empty) {

consumers.add(current);
lock_release(buffer);
thread_block(current);
lock_acquire(buffer);

}
item = buffer[tail++];
lock_release(buffer);
return item

}

Synchronization

Operating Systems

5

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Infinite Buffer Problem, Take 4

producer(item)
{
lock_acquire(buffer);
buffer[head++] = item;
if (#consumers > 0)

for c in consumers {
thread_unblock(c);

}
lock_release(buffer);

}

producer(item)
{
lock_acquire(buffer);
buffer[head++] = item;
if (#consumers > 0)

for c in consumers {
thread_unblock(c);

}
lock_release(buffer);

}

This is correct, but complicated and very easy to get wrong
– Want abstraction that does not require direct block/unblock call

consumer()
{

lock_acquire(buffer);
while (buffer is empty) {

consumers.add(current);
lock_release(buffer);
thread_block(current);
lock_acquire(buffer);

}
item = buffer[tail++];
lock_release(buffer);
return item

}

consumer()
{

lock_acquire(buffer);
while (buffer is empty) {

consumers.add(current);
lock_release(buffer);
thread_block(current);
lock_acquire(buffer);

}
item = buffer[tail++];
lock_release(buffer);
return item

}

Synchronization

Operating Systems

6

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Low-level vs. High-level Synchronization

Low-level synchronization primitives:
– Disabling preemption, (Blocking) Locks, Spinlocks
– implement mutual exclusion

Implementing precedence constraints directly via thread_unblock/thread_block is
problematic because

– It’s complicated (see last slides)
– It may violate encapsulation from a software engineering perspective
– You may not have that access at all (unprivileged code!)

We need well-understood higher-level constructs
– Semaphores
– Monitors

