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Recap: Synchronization

Disabling IRQs – use to protect against concurrent access by IRQ handler

Locks – use to protect against concurrent access by other threads

Direct implementation of locks on uniprocessor
– Requires disable_preemption
– Involves state change of thread if contended

Today: multiprocessor locks, locking strategies
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Multiprocessor Locks

Can’t stop threads running on other processors
– too expensive (interprocessor irq)
– also would create conflict with protection (locking = unprivileged op, stopping = 

privileged op), involving the kernel in *every* acquire/release

Instead: use atomic instructions provided by hardware
– E.g.: test-and-set, atomic-swap, compare-and-exchange, fetch-and-add
– All variations of “read-and-modify” theme

Locks are built on top of these
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Atomic Swap

// In C, an atomic swap instruction would like this
void
atomic_swap(int *memory1, int *memory2)
{

[ disable interrupts in CPU;
lock memory bus for other processors ]

int tmp = *memory1;
*memory1 = *memory2;
*memory2 = tmp;
[ unlock memory bus; reenable interrupts ]

}

// In C, an atomic swap instruction would like this
void
atomic_swap(int *memory1, int *memory2)
{

[ disable interrupts in CPU;
lock memory bus for other processors ]

int tmp = *memory1;
*memory1 = *memory2;
*memory2 = tmp;
[ unlock memory bus; reenable interrupts ]

}

CPU1CPU1 CPU2CPU2

MemoryMemory

memory bus



Synchronization

Operating Systems

4

Computer Science Dept Va Tech August 2007 ©2003-07  Back

Spinlocks

lock_acquire(struct lock *l)
{

int lockstate = LOCKED;
while (lockstate == LOCKED) { 

atomic_swap(&lockstate, 
&l->state);

}
}

lock_acquire(struct lock *l)
{

int lockstate = LOCKED;
while (lockstate == LOCKED) { 

atomic_swap(&lockstate, 
&l->state);

}
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

Thread spins until it acquires lock
– Q1: when should it block instead?
– Q2: what if spin lock holder is preempted?
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Spinning vs Blocking

Blocking has a cost
– Shouldn’t block if lock becomes available in less time than it takes to block

Strategy: spin for time it would take to block
– Even in worst case, total cost for lock_acquire is less than 2*block time
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Spinlocks vs Disabling Preemption

What if spinlocks were used on single CPU? Consider: 
– thread 1 takes spinlock
– thread 1 is preempted
– thread 2 with higher priority runs
– thread 2 tries to take spinlock, finds it taken
– thread 2 spins forever → deadlock!

Thus in practice, usually combine spinlocks with disabling preemption
– E.g., spin_lock_irqsave() in Linux

UP kernel: reduces to disable_preemption
SMP kernel: disable_preemption + spinlock

Spinlocks are used when holding resources for small periods of time (same rule 
as for when it’s ok to disable irqs)
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Spinlocks (Faster)

lock_acquire(struct lock *l)
{

int lockstate = LOCKED;
while (lockstate == LOCKED) {

while (l->state == LOCKED)
continue; 

atomic_swap(&lockstate, 
&l->state);

}
}

lock_acquire(struct lock *l)
{

int lockstate = LOCKED;
while (lockstate == LOCKED) {

while (l->state == LOCKED)
continue; 

atomic_swap(&lockstate, 
&l->state);

}
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

Only try “expensive” atomic_swap instruction if you’ve seen lock in unlocked 
state
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Locks: Ownership & Recursion

Locks typically (not always) have notion of ownership
– Only lock holder is allowed to unlock
– See Pintos lock_held_by_current_thread()

What if lock holder tries to acquire locks it already holds?
– Nonrecursive locks: deadlock!
– Recursive locks: 

inc counter
dec counter on lock_release
release when zero
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Implementing Locks: Practical Issues

How expensive are locks?

Two considerations: 
– Cost to acquire uncontended lock

UP Kernel: disable/enable irq + memory access
In other scenarios: needs atomic instruction (relatively expensive in terms of processor 
cycles, especially if executed often)

– Cost to acquire contended lock
Spinlock: blocks current CPU entirely (if no blocking is employed)
Regular lock: cost at least two context switches, plus associated management overhead

Conclusions
– Optimizing uncontended case is important
– “Hot locks” can sack performance easily



Synchronization

Operating Systems

10

Computer Science Dept Va Tech August 2007 ©2003-07  Back

Using Locks

Associate each shared variable with lock L
– “lock L protects that variable”

static struct list usedlist; /* List of used blocks */
static struct list freelist;  /* List of free blocks */

static struct lock listlock; /* Protects usedlist & freelist */

static struct list usedlist; /* List of used blocks */
static struct list freelist;  /* List of free blocks */

static struct lock listlock; /* Protects usedlist & freelist */

void *mem_alloc(…)
{

block *b;
lock_acquire(&listlock);
b = alloc_block_from_freelist();
insert_into_usedlist(&usedlist, b);
lock_release(&listlock);
return b->data;

}

void *mem_alloc(…)
{

block *b;
lock_acquire(&listlock);
b = alloc_block_from_freelist();
insert_into_usedlist(&usedlist, b);
lock_release(&listlock);
return b->data;

}

void mem_free(block *b)
{

lock_acquire(&listlock);
list_remove(&b->elem);
coalesce_into_freelist(&freelist, b);
lock_release(&listlock);

}

void mem_free(block *b)
{

lock_acquire(&listlock);
list_remove(&b->elem);
coalesce_into_freelist(&freelist, b);
lock_release(&listlock);

}
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How many locks should I use?

Could use one lock for all shared variables
– Disadvantage: if a thread holding the lock blocks, no other thread can access any 

shared variable, even unrelated ones
– Sometimes used when retrofitting non-threaded code into threaded framework
– Examples: 

“BKL” Big Kernel Lock in Linux
fslock in Pintos Project 2

Ideally, want fine-grained locking
– One lock only protects one (or a small set of) variables – how to pick that set?
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Multiple locks, the wrong way

static struct list usedlist; /* List of used blocks */
static struct list freelist;  /* List of free blocks */

static struct lock alloclock; /* Protects allocations */
static struct lock freelock; /* Protects deallocations */

static struct list usedlist; /* List of used blocks */
static struct list freelist;  /* List of free blocks */

static struct lock alloclock; /* Protects allocations */
static struct lock freelock; /* Protects deallocations */

void *mem_alloc(…)
{

block *b;
lock_acquire(&alloclock);
b = alloc_block_from_freelist();
insert_into_usedlist(&usedlist, b);
lock_release(&alloclock);
return b->data;

}

void *mem_alloc(…)
{

block *b;
lock_acquire(&alloclock);
b = alloc_block_from_freelist();
insert_into_usedlist(&usedlist, b);
lock_release(&alloclock);
return b->data;

}

void mem_free(block *b)
{

lock_acquire(&freelock);
list_remove(&b->elem);
coalesce_into_freelist(&freelist, b);
lock_release(&freelock);

}

void mem_free(block *b)
{

lock_acquire(&freelock);
list_remove(&b->elem);
coalesce_into_freelist(&freelist, b);
lock_release(&freelock);

}

Wrong: locks protect data structures, not 
code blocks! Allocating thread & deallocating
thread could collide

Wrong: locks protect data structures, not 
code blocks! Allocating thread & deallocating
thread could collide
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Multiple locks, 2nd try

static struct list usedlist; /* List of used blocks */
static struct list freelist;  /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

static struct list usedlist; /* List of used blocks */
static struct list freelist;  /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

void *mem_alloc(…)
{

block *b;
lock_acquire(&freelock);
b = alloc_block_from_freelist();
lock_acquire(&usedlock);
insert_into_usedlist(&usedlist, b);
lock_release(&freelock);
lock_release(&usedlock);
return b->data;

}

void *mem_alloc(…)
{

block *b;
lock_acquire(&freelock);
b = alloc_block_from_freelist();
lock_acquire(&usedlock);
insert_into_usedlist(&usedlist, b);
lock_release(&freelock);
lock_release(&usedlock);
return b->data;

}

void mem_free(block *b)
{

lock_acquire(&usedlock);
list_remove(&b->elem);
lock_acquire(&freelock);
coalesce_into_freelist(&freelist, b);
lock_release(&usedlock);
lock_release(&freelock);

}

void mem_free(block *b)
{

lock_acquire(&usedlock);
list_remove(&b->elem);
lock_acquire(&freelock);
coalesce_into_freelist(&freelist, b);
lock_release(&usedlock);
lock_release(&freelock);

}

Also wrong: deadlock!
Always acquire multiple locks in same order -
Or don’t hold them simultaneously

Also wrong: deadlock!
Always acquire multiple locks in same order -
Or don’t hold them simultaneously
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Multiple locks, correct (1)

static struct list usedlist; /* List of used blocks */
static struct list freelist;  /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

static struct list usedlist; /* List of used blocks */
static struct list freelist;  /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

void *mem_alloc(…)
{

block *b;
lock_acquire(&usedlock);
lock_acquire(&freelock);
b = alloc_block_from_freelist();
insert_into_usedlist(&usedlist, b);
lock_release(&freelock);
lock_release(&usedlock);
return b->data;

}

void *mem_alloc(…)
{

block *b;
lock_acquire(&usedlock);
lock_acquire(&freelock);
b = alloc_block_from_freelist();
insert_into_usedlist(&usedlist, b);
lock_release(&freelock);
lock_release(&usedlock);
return b->data;

}

void mem_free(block *b)
{

lock_acquire(&usedlock);
lock_acquire(&freelock);
list_remove(&b->elem);
coalesce_into_freelist(&freelist, b);
lock_release(&freelock);
lock_release(&usedlock);

}

void mem_free(block *b)
{

lock_acquire(&usedlock);
lock_acquire(&freelock);
list_remove(&b->elem);
coalesce_into_freelist(&freelist, b);
lock_release(&freelock);
lock_release(&usedlock);

}

Correct, but inefficient!
Locks are always held simultaneously, 
one lock would suffice

Correct, but inefficient!
Locks are always held simultaneously, 
one lock would suffice
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Multiple locks, correct (2)

static struct list usedlist; /* List of used blocks */
static struct list freelist;  /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

static struct list usedlist; /* List of used blocks */
static struct list freelist;  /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

void *mem_alloc(…)
{

block *b;
lock_acquire(&freelock);
b = alloc_block_from_freelist();
lock_release(&freelock);
lock_acquire(&usedlock);
insert_into_usedlist(&usedlist, b);
lock_release(&usedlock);
return b->data;

}

void *mem_alloc(…)
{

block *b;
lock_acquire(&freelock);
b = alloc_block_from_freelist();
lock_release(&freelock);
lock_acquire(&usedlock);
insert_into_usedlist(&usedlist, b);
lock_release(&usedlock);
return b->data;

}

void mem_free(block *b)
{

lock_acquire(&usedlock);
list_remove(&b->elem);
lock_release(&usedlock);
lock_acquire(&freelock);
coalesce_into_freelist(&freelist, b);
lock_release(&freelock);

}

void mem_free(block *b)
{

lock_acquire(&usedlock);
list_remove(&b->elem);
lock_release(&usedlock);
lock_acquire(&freelock);
coalesce_into_freelist(&freelist, b);
lock_release(&freelock);

}

Correct, but not necessarily better!
On uniprocessor:
No throughput from fine-grained locking, since no 
blocking inside critical sections – but pay twice the price
compared to one-lock solution
On multiprocessor:
Gain from being able to manipulate free & used 
lists in parallel, but increased risk of contended locks

Correct, but not necessarily better!
On uniprocessor:
No throughput from fine-grained locking, since no 
blocking inside critical sections – but pay twice the price
compared to one-lock solution
On multiprocessor:
Gain from being able to manipulate free & used 
lists in parallel, but increased risk of contended locks
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Conclusion

Choosing which lock should protect which shared variable(s) is not easy – must 
weigh:

– Whether all variables are always accessed together (use one lock if so)
– Whether code inside critical section can block (if not, no throughput gain from 

fine-grained locking on uniprocessor)
– Whether there is a consistency requirement if multiple variables are accessed in 

related sequence (must hold single lock if so)
See “Subtle race condition in Java” below

– Cost of multiple calls to lock/unlock (increasing parallelism advantages may be 
offset by those costs)


