
Synchronization

Operating Systems

1

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Recap: Synchronization

Disabling IRQs – use to protect against concurrent access by IRQ handler

Locks – use to protect against concurrent access by other threads

Direct implementation of locks on uniprocessor
– Requires disable_preemption
– Involves state change of thread if contended

Today: multiprocessor locks, locking strategies

Synchronization

Operating Systems

2

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Multiprocessor Locks

Can’t stop threads running on other processors
– too expensive (interprocessor irq)
– also would create conflict with protection (locking = unprivileged op, stopping =

privileged op), involving the kernel in *every* acquire/release

Instead: use atomic instructions provided by hardware
– E.g.: test-and-set, atomic-swap, compare-and-exchange, fetch-and-add
– All variations of “read-and-modify” theme

Locks are built on top of these

Synchronization

Operating Systems

3

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Atomic Swap

// In C, an atomic swap instruction would like this
void
atomic_swap(int *memory1, int *memory2)
{

[disable interrupts in CPU;
lock memory bus for other processors]

int tmp = *memory1;
*memory1 = *memory2;
*memory2 = tmp;
[unlock memory bus; reenable interrupts]

}

// In C, an atomic swap instruction would like this
void
atomic_swap(int *memory1, int *memory2)
{

[disable interrupts in CPU;
lock memory bus for other processors]

int tmp = *memory1;
*memory1 = *memory2;
*memory2 = tmp;
[unlock memory bus; reenable interrupts]

}

CPU1CPU1 CPU2CPU2

MemoryMemory

memory bus

Synchronization

Operating Systems

4

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Spinlocks

lock_acquire(struct lock *l)
{

int lockstate = LOCKED;
while (lockstate == LOCKED) {

atomic_swap(&lockstate,
&l->state);

}
}

lock_acquire(struct lock *l)
{

int lockstate = LOCKED;
while (lockstate == LOCKED) {

atomic_swap(&lockstate,
&l->state);

}
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

Thread spins until it acquires lock
– Q1: when should it block instead?
– Q2: what if spin lock holder is preempted?

Synchronization

Operating Systems

5

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Spinning vs Blocking

Blocking has a cost
– Shouldn’t block if lock becomes available in less time than it takes to block

Strategy: spin for time it would take to block
– Even in worst case, total cost for lock_acquire is less than 2*block time

Synchronization

Operating Systems

6

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Spinlocks vs Disabling Preemption

What if spinlocks were used on single CPU? Consider:
– thread 1 takes spinlock
– thread 1 is preempted
– thread 2 with higher priority runs
– thread 2 tries to take spinlock, finds it taken
– thread 2 spins forever → deadlock!

Thus in practice, usually combine spinlocks with disabling preemption
– E.g., spin_lock_irqsave() in Linux

UP kernel: reduces to disable_preemption
SMP kernel: disable_preemption + spinlock

Spinlocks are used when holding resources for small periods of time (same rule
as for when it’s ok to disable irqs)

Synchronization

Operating Systems

7

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Spinlocks (Faster)

lock_acquire(struct lock *l)
{

int lockstate = LOCKED;
while (lockstate == LOCKED) {

while (l->state == LOCKED)
continue;

atomic_swap(&lockstate,
&l->state);

}
}

lock_acquire(struct lock *l)
{

int lockstate = LOCKED;
while (lockstate == LOCKED) {

while (l->state == LOCKED)
continue;

atomic_swap(&lockstate,
&l->state);

}
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

Only try “expensive” atomic_swap instruction if you’ve seen lock in unlocked
state

Synchronization

Operating Systems

8

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Locks: Ownership & Recursion

Locks typically (not always) have notion of ownership
– Only lock holder is allowed to unlock
– See Pintos lock_held_by_current_thread()

What if lock holder tries to acquire locks it already holds?
– Nonrecursive locks: deadlock!
– Recursive locks:

inc counter
dec counter on lock_release
release when zero

Synchronization

Operating Systems

9

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Implementing Locks: Practical Issues

How expensive are locks?

Two considerations:
– Cost to acquire uncontended lock

UP Kernel: disable/enable irq + memory access
In other scenarios: needs atomic instruction (relatively expensive in terms of processor
cycles, especially if executed often)

– Cost to acquire contended lock
Spinlock: blocks current CPU entirely (if no blocking is employed)
Regular lock: cost at least two context switches, plus associated management overhead

Conclusions
– Optimizing uncontended case is important
– “Hot locks” can sack performance easily

Synchronization

Operating Systems

10

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Using Locks

Associate each shared variable with lock L
– “lock L protects that variable”

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock listlock; /* Protects usedlist & freelist */

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock listlock; /* Protects usedlist & freelist */

void *mem_alloc(…)
{

block *b;
lock_acquire(&listlock);
b = alloc_block_from_freelist();
insert_into_usedlist(&usedlist, b);
lock_release(&listlock);
return b->data;

}

void *mem_alloc(…)
{

block *b;
lock_acquire(&listlock);
b = alloc_block_from_freelist();
insert_into_usedlist(&usedlist, b);
lock_release(&listlock);
return b->data;

}

void mem_free(block *b)
{

lock_acquire(&listlock);
list_remove(&b->elem);
coalesce_into_freelist(&freelist, b);
lock_release(&listlock);

}

void mem_free(block *b)
{

lock_acquire(&listlock);
list_remove(&b->elem);
coalesce_into_freelist(&freelist, b);
lock_release(&listlock);

}

Synchronization

Operating Systems

11

Computer Science Dept Va Tech August 2007 ©2003-07 Back

How many locks should I use?

Could use one lock for all shared variables
– Disadvantage: if a thread holding the lock blocks, no other thread can access any

shared variable, even unrelated ones
– Sometimes used when retrofitting non-threaded code into threaded framework
– Examples:

“BKL” Big Kernel Lock in Linux
fslock in Pintos Project 2

Ideally, want fine-grained locking
– One lock only protects one (or a small set of) variables – how to pick that set?

Synchronization

Operating Systems

12

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Multiple locks, the wrong way

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock alloclock; /* Protects allocations */
static struct lock freelock; /* Protects deallocations */

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock alloclock; /* Protects allocations */
static struct lock freelock; /* Protects deallocations */

void *mem_alloc(…)
{

block *b;
lock_acquire(&alloclock);
b = alloc_block_from_freelist();
insert_into_usedlist(&usedlist, b);
lock_release(&alloclock);
return b->data;

}

void *mem_alloc(…)
{

block *b;
lock_acquire(&alloclock);
b = alloc_block_from_freelist();
insert_into_usedlist(&usedlist, b);
lock_release(&alloclock);
return b->data;

}

void mem_free(block *b)
{

lock_acquire(&freelock);
list_remove(&b->elem);
coalesce_into_freelist(&freelist, b);
lock_release(&freelock);

}

void mem_free(block *b)
{

lock_acquire(&freelock);
list_remove(&b->elem);
coalesce_into_freelist(&freelist, b);
lock_release(&freelock);

}

Wrong: locks protect data structures, not
code blocks! Allocating thread & deallocating
thread could collide

Wrong: locks protect data structures, not
code blocks! Allocating thread & deallocating
thread could collide

Synchronization

Operating Systems

13

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Multiple locks, 2nd try

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

void *mem_alloc(…)
{

block *b;
lock_acquire(&freelock);
b = alloc_block_from_freelist();
lock_acquire(&usedlock);
insert_into_usedlist(&usedlist, b);
lock_release(&freelock);
lock_release(&usedlock);
return b->data;

}

void *mem_alloc(…)
{

block *b;
lock_acquire(&freelock);
b = alloc_block_from_freelist();
lock_acquire(&usedlock);
insert_into_usedlist(&usedlist, b);
lock_release(&freelock);
lock_release(&usedlock);
return b->data;

}

void mem_free(block *b)
{

lock_acquire(&usedlock);
list_remove(&b->elem);
lock_acquire(&freelock);
coalesce_into_freelist(&freelist, b);
lock_release(&usedlock);
lock_release(&freelock);

}

void mem_free(block *b)
{

lock_acquire(&usedlock);
list_remove(&b->elem);
lock_acquire(&freelock);
coalesce_into_freelist(&freelist, b);
lock_release(&usedlock);
lock_release(&freelock);

}

Also wrong: deadlock!
Always acquire multiple locks in same order -
Or don’t hold them simultaneously

Also wrong: deadlock!
Always acquire multiple locks in same order -
Or don’t hold them simultaneously

Synchronization

Operating Systems

14

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Multiple locks, correct (1)

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

void *mem_alloc(…)
{

block *b;
lock_acquire(&usedlock);
lock_acquire(&freelock);
b = alloc_block_from_freelist();
insert_into_usedlist(&usedlist, b);
lock_release(&freelock);
lock_release(&usedlock);
return b->data;

}

void *mem_alloc(…)
{

block *b;
lock_acquire(&usedlock);
lock_acquire(&freelock);
b = alloc_block_from_freelist();
insert_into_usedlist(&usedlist, b);
lock_release(&freelock);
lock_release(&usedlock);
return b->data;

}

void mem_free(block *b)
{

lock_acquire(&usedlock);
lock_acquire(&freelock);
list_remove(&b->elem);
coalesce_into_freelist(&freelist, b);
lock_release(&freelock);
lock_release(&usedlock);

}

void mem_free(block *b)
{

lock_acquire(&usedlock);
lock_acquire(&freelock);
list_remove(&b->elem);
coalesce_into_freelist(&freelist, b);
lock_release(&freelock);
lock_release(&usedlock);

}

Correct, but inefficient!
Locks are always held simultaneously,
one lock would suffice

Correct, but inefficient!
Locks are always held simultaneously,
one lock would suffice

Synchronization

Operating Systems

15

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Multiple locks, correct (2)

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

void *mem_alloc(…)
{

block *b;
lock_acquire(&freelock);
b = alloc_block_from_freelist();
lock_release(&freelock);
lock_acquire(&usedlock);
insert_into_usedlist(&usedlist, b);
lock_release(&usedlock);
return b->data;

}

void *mem_alloc(…)
{

block *b;
lock_acquire(&freelock);
b = alloc_block_from_freelist();
lock_release(&freelock);
lock_acquire(&usedlock);
insert_into_usedlist(&usedlist, b);
lock_release(&usedlock);
return b->data;

}

void mem_free(block *b)
{

lock_acquire(&usedlock);
list_remove(&b->elem);
lock_release(&usedlock);
lock_acquire(&freelock);
coalesce_into_freelist(&freelist, b);
lock_release(&freelock);

}

void mem_free(block *b)
{

lock_acquire(&usedlock);
list_remove(&b->elem);
lock_release(&usedlock);
lock_acquire(&freelock);
coalesce_into_freelist(&freelist, b);
lock_release(&freelock);

}

Correct, but not necessarily better!
On uniprocessor:
No throughput from fine-grained locking, since no
blocking inside critical sections – but pay twice the price
compared to one-lock solution
On multiprocessor:
Gain from being able to manipulate free & used
lists in parallel, but increased risk of contended locks

Correct, but not necessarily better!
On uniprocessor:
No throughput from fine-grained locking, since no
blocking inside critical sections – but pay twice the price
compared to one-lock solution
On multiprocessor:
Gain from being able to manipulate free & used
lists in parallel, but increased risk of contended locks

Synchronization

Operating Systems

16

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Conclusion

Choosing which lock should protect which shared variable(s) is not easy – must
weigh:

– Whether all variables are always accessed together (use one lock if so)
– Whether code inside critical section can block (if not, no throughput gain from

fine-grained locking on uniprocessor)
– Whether there is a consistency requirement if multiple variables are accessed in

related sequence (must hold single lock if so)
See “Subtle race condition in Java” below

– Cost of multiple calls to lock/unlock (increasing parallelism advantages may be
offset by those costs)

