Recap: Synchronization Synchronization 1

Disabling IRQs — use to protect against concurrent access by IRQ handler
Locks — use to protect against concurrent access by other threads

Direct implementation of locks on uniprocessor
Requires disable_preemption
Involves state change of thread if contended

Today: multiprocessor locks, locking strategies

Operating Systems

Multiprocessor Locks Synchronization 2

Can’t stop threads running on other processors
too expensive (interprocessor irqg)

also would create conflict with protection (locking = unprivileged op, stopping =
privileged op), involving the kernel in *every* acquire/release

Instead: use atomic instructions provided by hardware
E.g.: test-and-set, atomic-swap, compare-and-exchange, fetch-and-add
All variations of “read-and-modify” theme

Locks are built on top of these

Operating Systems

Atomic Swap Synchronization 3

I/l In C, an atomic swap instruction would like this

void
atomic_swap(int *memory1, int *memory?2) CPU1 CPU2

{

[disable interrupts in CPU;
lock memory bus for other processors |
Int tmp = *memoryl,;

*memoryl = *memory2; Memory
*memory2 = tmp;
[unlock memory bus; reenable interrupts] memory bus

Operating Systems

Spinlocks

Synchronization 4

lock_acquire(struct lock *I)
{
Int lockstate = LOCKED,;
while (lockstate == LOCKED) {
atomic_swap(&lockstate,
&l->state);

lock_release(struct lock *I)

{
}

|->state = UNLOCKED:

Thread spins until it acquires lock
Q1: when should it block instead?

Q2: what if spin lock holder is preempted?

Operating Systems

I Spinning vs Blocking Synchronization 5

Blocking has a cost
Shouldn’t block if lock becomes available in less time than it takes to block

Strategy: spin for time it would take to block
Even in worst case, total cost for lock_acquire is less than 2*block time

Operating Systems

Spinlocks vs Disabling Preemption Synchronization 6

What if spinlocks were used on single CPU? Consider:
thread 1 takes spinlock
thread 1 is preempted
thread 2 with higher priority runs
thread 2 tries to take spinlock, finds it taken
thread 2 spins forever — deadlock!

Thus in practice, usually combine spinlocks with disabling preemption
E.g., spin_lock_irgsave() in Linux
UP kernel: reduces to disable_preemption
SMP kernel: disable _preemption + spinlock

Spinlocks are used when holding resources for small periods of time (same rule
as for when it’s ok to disable irgs)

Operating Systems

Spinlocks (Faster) Synchronization 7

lock acquire(struct lock *I) lock release(struct lock *I)

{ {

Int lockstate = LOCKED:; |->state = UNLOCKED;

while (lockstate == LOCKED) { }

while (I->state == LOCKED)

continue;

atomic_swap(&lockstate,
&l->state);

Only try “expensive” atomic_swap instruction if you’ve seen lock in unlocked
state

Operating Systems

™ Locks: Ownership & Recursion Synchronization 8

Locks typically (not always) have notion of ownership
Only lock holder is allowed to unlock
See Pintos lock _held by current_thread()

What if lock holder tries to acquire locks it already holds?
Nonrecursive locks: deadlock!

Recursive locks:
inc counter
dec counter on lock_release
release when zero

Operating Systems

Implementing Locks: Practical Issues Synchronization 9

How expensive are locks?

Two considerations:

Cost to acquire uncontended lock
UP Kernel: disable/enable irq + memory access

In other scenarios: needs atomic instruction (relatively expensive in terms of processor
cycles, especially if executed often)

Cost to acquire contended lock
Spinlock: blocks current CPU entirely (if no blocking is employed)
Regular lock: cost at least two context switches, plus associated management overhead

Conclusions
Optimizing uncontended case is important
“Hot locks” can sack performance easily

Operating Systems

™ Using Locks Synchronization 10

Associate each shared variable with lock L
“lock L protects that variable”

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock listlock; /* Protects usedlist & freelist */

void *mem_alloc(...) void mem_ free(block *b)
{ {
block *Db; lock _acquire(&listlock);
lock _acquire(&listlock); list_ remove(&b->elem);
b = alloc_block from_freelist(); coalesce_into_freelist(&freelist, b);
insert_into_usedlist(&usedlist, b); lock release(&listlock);
lock release(&listlock); }
return b->data,;
b

Operating Systems

How many locks should | use? Synchronization 11

Could use one lock for all shared variables
Disadvantage: if a thread holding the lock blocks, no other thread can access any
shared variable, even unrelated ones
Sometimes used when retrofitting non-threaded code into threaded framework

Examples:
“BKL” Big Kernel Lock in Linux

fslock in Pintos Project 2

Ideally, want fine-grained locking
One lock only protects one (or a small set of) variables — how to pick that set?

Operating Systems

I Multiple locks, the wrong way

Synchronization 12

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock alloclock; /* Protects allocations */
static struct lock freelock: /* Protects deallocations */

{

void *mem_alloc(...)

{
block *b;

lock acquire(&alloclock);

b = alloc_block from_freelist();
insert_into_usedlist(&usedlist, b);
lock release(&alloclock); }
return b->data,;

void mem_ free(block *b)

lock_acquire(&freelock);
list_remove(&b->elem);
coalesce_into_freelist(&freelist, b);
lock _release(&freelock);

Wrong: locks protect data structures, not
code blocks! Allocating thread & deallocating
thread could collide

Operating Systems

W Multiple locks, 2nd try Synchronization 13

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock: /* Protects freelist */

void *mem_alloc(...) void mem_free(block *b)

{ {
block *Db; lock _acquire(&usedlock);
lock _acquire(&freelock); list_ remove(&b->elem);
b = alloc_block from_freelist(); lock_acquire(&freelock);
lock_acquire(&usedlock); coalesce_into_freelist(&freelist, b);
insert_into_usedlist(&usedlist, b); lock_release(&usedlock);
lock_release(&freelock); lock release(&freelock);
lock release(&usedlock); }
return b->data;

¥ Also wrong: deadlock!

Always acquire multiple locks in same order -
Or don’t hold them simultaneously

Operating Systems

I Multiple locks, correct (1) Synchronization 14

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock: /* Protects freelist */

void *mem_alloc(...) void mem_ free(block *b)

{ {
block *Db; lock _acquire(&usedlock);
lock _acquire(&usedlock); lock_acquire(&freelock);
lock_acquire(&freelock); list_remove(&b->elem);
b = alloc_block from_freelist(); coalesce _into_freelist(&freelist, b);
insert_into_usedlist(&usedlist, b); lock_release(&freelock);
lock_release(&freelock); lock_release(&usedlock);
lock release(&usedlock); }
return b->data;

¥ Correct, but inefficient!

Locks are always held simultaneously,
one lock would suffice

Operating Systems

I Multiple locks, correct (2) Synchronization 15

static struct Ii
static struct |

static struct |4
static struct Iq

Correct, but not necessarily better!

On uniprocessor:

No throughput from fine-grained locking, since no
blocking inside critical sections — but pay twice the price
compared to one-lock solution

On multiprocessor:

Gain from being able to manipulate free & used

void *mem_alloc(...) lists in parallel, but increased risk of contended locks
{
block *b; void mem_ free(block *b)
lock_acquire(&freelock); {
b = alloc_block from_freelist(); lock _acquire(&usedlock);
lock_release(&freelock); list_ remove(&b->elem);
lock_acquire(&usedlock); lock_release(&usedlock);
insert_into_usedlist(&usedlist, b); lock_acquire(&freelock);
lock release(&usedlock); coalesce_into_freelist(&freelist, b);
return b->data; lock release(&freelock);
by by

Operating Systems

Conclusion Synchronization 16

Choosing which lock should protect which shared variable(s) Is not easy — must
weigh:
Whether all variables are always accessed together (use one lock if so)

Whether code inside critical section can block (if not, no throughput gain from
fine-grained locking on uniprocessor)

Whether there is a consistency requirement if multiple variables are accessed in
related sequence (must hold single lock if so)

See “Subtle race condition in Java” below

Cost of multiple calls to lock/unlock (increasing parallelism advantages may be
offset by those costs)

Operating Systems

