
Computer Science Dept Va Tech Jan 2008 ©2003-08 McQuain

Processes

Operating Systems

1Overview

Definitions
How does OS execute processes?

– How do kernel & processes interact
– How does kernel switch between processes
– How do interrupts fit in

What’s the difference between threads/processes
Process States
Priority Scheduling

Computer Science Dept Va Tech Jan 2008 ©2003-08 McQuain

Processes

Operating Systems

2Process

These are all possible definitions:
– A program in execution
– An instance of a program running on a computer
– Schedulable entity (*)
– Unit of resource ownership
– Unit of protection
– Execution sequence (*) + current state (*) + set of resources

(*) can be said of threads as well

Computer Science Dept Va Tech Jan 2008 ©2003-08 McQuain

Processes

Operating Systems

3Alternative definition

Thread:
– Execution sequence + CPU state (registers + stack)

Process:
– n Threads + Resources shared by them (specifically: accessible heap memory, global

variables, file descriptors, etc.)

In most contemporary OS, n >= 1.

In Pintos, n=1: a process is a thread – as in traditional Unix.
– Following discussion applies to both threads & processes.

Computer Science Dept Va Tech Jan 2008 ©2003-08 McQuain

Processes

Operating Systems

4Context Switching

Multiprogramming: switch to another process if current process is (momentarily) blocked

Time-sharing: switch to another process periodically to make sure all process make equal
progress

– this switch is called a context switch.

Must understand how it works
– how it interacts with user/kernel mode switching
– how it maintains the illusion of each process having the CPU to itself (process must not

notice being switched in and out!)

Computer Science Dept Va Tech Jan 2008 ©2003-08 McQuain

Processes

Operating Systems

5Context Switching

Process 1

Process 2

Kernel

user mode

kernel mode

Timer interrupt: P1 is preempted,
context switch to P2

Timer interrupt: P1 is preempted,
context switch to P2

System call: (trap):
P2 starts I/O operation, blocks
context switch to process 1

System call: (trap):
P2 starts I/O operation, blocks
context switch to process 1

I/O device interrupt:
P2’s I/O complete
switch back to P2

I/O device interrupt:
P2’s I/O complete
switch back to P2

Timer interrupt: P2 still has
time left, no context switch

Timer interrupt: P2 still has
time left, no context switch

Computer Science Dept Va Tech Jan 2008 ©2003-08 McQuain

Processes

Operating Systems

6Aside: Kernel Threads

Process 1

Process 2

Kernel

user mode

kernel mode

Most OS (including Pintos) support kernel threads
that never run in user mode – in fact, in Project 1, all
Pintos threads run like that.

Most OS (including Pintos) support kernel threads
that never run in user mode – in fact, in Project 1, all
Pintos threads run like that.

Kernel Thread

Careful: “kernel thread” not the same as
kernel-level thread (KLT) – more on KLT later

Computer Science Dept Va Tech Jan 2008 ©2003-08 McQuain

Processes

Operating Systems

7Mode Switching

User → Kernel mode
– For reasons external or internal to CPU

External (aka hardware) interrupt:
– timer/clock chip, I/O device, network card, keyboard, mouse
– asynchronous (with respect to the executing program)

Internal interrupt (aka software interrupt, trap, or exception)
– are synchronous
– can be intended: for system call (process wants to enter kernel to obtain services)
– or unintended (usually): fault/exception (division by zero, attempt to execute privileged

instruction in user mode)

Kernel → User mode switch on iret instruction

Computer Science Dept Va Tech Jan 2008 ©2003-08 McQuain

Processes

Operating Systems

8Context vs Mode Switching

Mode switch guarantees kernel gains control when needed
– To react to external events
– To handle error situations
– Entry into kernel is controlled

Not all mode switches lead to context switches
– Kernel code’s logic decides when – subject of scheduling

Mode switch always hardware supported
– Context switch (typically) not – this means many options for implementing it!

Computer Science Dept Va Tech Jan 2008 ©2003-08 McQuain

Processes

Operating Systems

9Implementing Processes

To maintain illusion, must remember a process’s information when not currently running

Process Control Block (PCB)
– Identifier (*)
– Value of registers, including stack pointer (*)
– Information needed by scheduler: process state (whether blocked or not) (*)
– Resources held by process: file descriptors, memory pages, etc.

(*) applies to TCB (thread control block) as well

Computer Science Dept Va Tech Jan 2008 ©2003-08 McQuain

Processes

Operating Systems

10PCB vs TCB

In 1:1 systems (Pintos), TCB==PCB
– struct thread

– add information there as projects progress
In 1:n systems:

– TCB contains execution state of thread + scheduling information + link to PCB
for process to which thread belongs

– PCB contains identifier, plus information about resources shared by all threads

struct thread
{

tid_t tid; /* Thread identifier. */
enum thread_status status; /* Thread state. */
char name[16]; /* Name. */
uint8_t *stack; /* Saved stack pointer. */
int priority; /* Priority. */
struct list_elem elem; /* List element. */
/* others you’ll add as needed. */

};

Computer Science Dept Va Tech Jan 2008 ©2003-08 McQuain

Processes

Operating Systems

11Steps in context switch: high-level

Save the current process’s execution state to its PCB

Update current’s PCB as needed

Choose next process N

Update N’s PCB as needed

Restore N’s PCB execution state
– May involve reprogramming MMU

Computer Science Dept Va Tech Jan 2008 ©2003-08 McQuain

Processes

Operating Systems

12Execution State

Saving/restoring execution state is highly tricky:
– Must save state without destroying it

Registers
– On x86: eax, ebx, ecx, …

Stack
– Special area in memory that holds activation records: e.g., the local (automatic) variables of

all function calls currently in progress
– Saving the stack means retaining that area & saving a pointer to it (“stack pointer” = esp)

Computer Science Dept Va Tech Jan 2008 ©2003-08 McQuain

Processes

Operating Systems

13The Stack, seen from C/C++

Q.: which of these variables are stored on the stack, and which are not?

void func(int d)

{
static int e;

int f;
struct S w;
int *g = new int[10];

}

int a;

static int b;
int c = 5;

struct S
{

int t;

} s;

A.: On stack: d, f, w (including w.t), g
Not on stack: a, b, c, s (including s.t), e, g[0]…g[9]

A.: On stack: d, f, w (including w.t), g
Not on stack: a, b, c, s (including s.t), e, g[0]…g[9]

Computer Science Dept Va Tech Jan 2008 ©2003-08 McQuain

Processes

Operating Systems

14Switching Procedures

Inside kernel, context switch is implemented in some procedure (function) called from C
code

– Appears to caller as a procedure call

Must understand how to switch procedures (call/return)

Procedure calling conventions
– Architecture-specific
– Defined by ABI (application binary interface), implemented by compiler
– Pintos uses SVR4 ABI

Computer Science Dept Va Tech Jan 2008 ©2003-08 McQuain

Processes

Operating Systems

15x86 Calling Conventions

Caller saves caller-saved registers as
needed

Caller pushes arguments, right-to-left on
stack via push assembly instruction

Caller executes CALL instruction: save
address of next instruction & jump to
callee

Callee executes:
– Saves callee-saved registers if they’ll

be destroyed
– Puts return value (if any) in eax

Callee returns: pop return address from
stack & jump to it

Caller resumes: pop arguments off the stack
Caller restores caller-saved registers, if any

Computer Science Dept Va Tech Jan 2008 ©2003-08 McQuain

Processes

Operating Systems

16Example

int globalvar;

int
callee(int a, int b)
{

return a + b;
}

int
caller(void)
{

return callee(5, globalvar);
}

callee:
pushl %ebp
movl %esp, %ebp
movl 12(%ebp), %eax
addl 8(%ebp), %eax
leave
ret

caller:
pushl %ebp
movl %esp, %ebp
pushl globalvar
pushl $5
call callee
popl %edx
popl %ecx
leave
ret

Computer Science Dept Va Tech Jan 2008 ©2003-08 McQuain

Processes

Operating Systems

17Pintos Context Switch (1)

threads/thread.c, threads/switch.S

static void
schedule (void)
{
struct thread *cur = running_thread ();
struct thread *next = next_thread_to_run ();
struct thread *prev = NULL;
if (cur != next)
prev = switch_threads (cur, next);

retlabel: /* not in actual code */
schedule_tail (prev);

}

uint32_t thread_stack_ofs = offsetof (struct thread, stack);

Stack
…

next
cur

&retlabelesp

Computer Science Dept Va Tech Jan 2008 ©2003-08 McQuain

Processes

Operating Systems

18Pintos Context Switch (2)

switch_threads:
Save caller's register state.
Note that the SVR4 ABI allows us to destroy %eax, %ecx, %edx,
but requires us to preserve %ebx, %ebp, %esi, %edi.
pushl %ebx; pushl %ebp; pushl %esi; pushl %edi

Get offsetof (struct thread, stack).
mov thread_stack_ofs, %edx

Save current stack pointer to old thread's stack.
movl SWITCH_CUR(%esp), %eax
movl %esp, (%eax,%edx,1)

Restore stack pointer from new thread's stack.
movl SWITCH_NEXT(%esp), %ecx
movl (%ecx,%edx,1), %esp

Restore caller's register state.
popl %edi; popl %esi; popl %ebp; popl %ebx
ret

Stack
…

next
cur

&retlabelesp

Stack
…

next
cur

&retlabel
ebx
ebp
esi
ediesp

#define SWITCH_CUR 20
#define SWITCH_NEXT 24

#define SWITCH_CUR 20
#define SWITCH_NEXT 24

cur->stack = esp

esp = next->stack

// switch_thread (struct thread *cur, struct thread *next)

Computer Science Dept Va Tech Jan 2008 ©2003-08 McQuain

Processes

Operating Systems

19Famous Quote For The Day

Source: Dennis Ritchie, Unix V6 slp.c (context-switching code) as per The Unix Heritage
Society (tuhs.org); gif by Eddie Koehler.

If the new process paused because it was swapped out,
set the stack level to the last call to savu(u_ssav). This
means that the return which is executed immediately
after the call to aretu actually returns from the last
routine which did the savu.

You are not expected to understand this.

Computer Science Dept Va Tech Jan 2008 ©2003-08 McQuain

Processes

Operating Systems

20Pintos Context Switch (3)

All state is stored on outgoing thread’s stack, and restored from incoming thread’s stack
– Each thread has a 4KB page for its stack
– Called “kernel stack” because it’s only used when thread executes in kernel mode
– Mode switch automatically switches to kernel stack

x86 does this in hardware, curiously.

switch_threads assumes that the thread that’s switched in was suspended in
switch_threads as well.

– Must fake that environment when switching to a thread for the first time.

Aside: none of the thread switching code uses privileged instructions:
– that’s what makes user-level threads (ULT) possible

Computer Science Dept Va Tech Jan 2008 ©2003-08 McQuain

Processes

Operating Systems

21Pintos Kernel Stack
4 kB +---------------------------------+

| kernel stack |
| | |
| | |
| V |
| grows downward |
| ... |
| ... |
| switch_threads’s |
| stack frame <---+ |
+----------------------+----------+	
magic	
:	
stack---+	
name	
status	

0 kB +---------------------------------+

One page of memory captures a
process’s kernel stack + PCB

Don’t allocate large objects on the
stack:

void
kernel_function(void)
{

char buf[4096]; // DON’T
// KERNEL STACK OVERFLOW
// guaranteed

}

Computer Science Dept Va Tech Jan 2008 ©2003-08 McQuain

Processes

Operating Systems

22External Interrupts & Context Switches

intr_entry:
/* Save caller's registers. */
pushl %ds; pushl %es; pushl %fs; pushl %gs; pushal

/* Set up kernel environment. */
cld
mov $SEL_KDSEG, %eax /* Initialize segment registers. */
mov %eax, %ds; mov %eax, %es
leal 56(%esp), %ebp /* Set up frame pointer. */

pushl %esp
call intr_handler /* Call interrupt handler. Context switch happens in there*/
addl $4, %esp
/* FALL THROUGH */

intr_exit: /* Separate entry for initial user program start */
/* Restore caller's registers. */
popal; popl %gs; popl %fs; popl %es; popl %ds
iret /* Return to current process, or to new process after context switch. */

Computer Science Dept Va Tech Jan 2008 ©2003-08 McQuain

Processes

Operating Systems

23Context Switching: Summary

Context switch means to save the current and restore next process’s execution context

Context Switch != Mode Switch
– Although mode switch often precedes context switch

Asynchronous context switch happens in interrupt handler
– Usually last thing before leaving handler

Have ignored so far when to context switch & why → next

