#include "list.h" #include "../debug.h" /* Our doubly linked lists have two header elements: the "head" just before the first element and the "tail" just after the last element. The `prev' link of the front header is null, as is the `next' link of the back header. Their other two links point toward each other via the interior elements of the list. An empty list looks like this: +------+ +------+ <---| head |<--->| tail |---> +------+ +------+ A list with two elements in it looks like this: +------+ +-------+ +-------+ +------+ <---| head |<--->| 1 |<--->| 2 |<--->| tail |<---> +------+ +-------+ +-------+ +------+ The symmetry of this arrangement eliminates lots of special cases in list processing. For example, take a look at list_remove(): it takes only two pointer assignments and no conditionals. That's a lot simpler than the code would be without header elements. (Because only one of the pointers in each header element is used, we could in fact combine them into a single header element without sacrificing this simplicity. But using two separate elements allows us to do a little bit of checking on some operations, which can be valuable.) */ static bool is_sorted (struct list_elem *a, struct list_elem *b, list_less_func *less, void *aux) UNUSED; /* Returns true if ELEM is a head, false otherwise. */ static inline bool is_head (struct list_elem *elem) { return elem != NULL && elem->prev == NULL && elem->next != NULL; } /* Returns true if ELEM is an interior element, false otherwise. */ static inline bool is_interior (struct list_elem *elem) { return elem != NULL && elem->prev != NULL && elem->next != NULL; } /* Returns true if ELEM is a tail, false otherwise. */ static inline bool is_tail (struct list_elem *elem) { return elem != NULL && elem->prev != NULL && elem->next == NULL; } /* Initializes LIST as an empty list. */ void list_init (struct list *list) { ASSERT (list != NULL); list->head.prev = NULL; list->head.next = &list->tail; list->tail.prev = &list->head; list->tail.next = NULL; } /* Returns the beginning of LIST. */ struct list_elem * list_begin (struct list *list) { ASSERT (list != NULL); return list->head.next; } /* Returns the element after ELEM in its list. If ELEM is the last element in its list, returns the list tail. Results are undefined if ELEM is itself a list tail. */ struct list_elem * list_next (struct list_elem *elem) { ASSERT (is_head (elem) || is_interior (elem)); return elem->next; } /* Returns LIST's tail. list_end() is often used in iterating through a list from front to back. See the big comment at the top of list.h for an example. */ struct list_elem * list_end (struct list *list) { ASSERT (list != NULL); return &list->tail; } /* Returns the LIST's reverse beginning, for iterating through LIST in reverse order, from back to front. */ struct list_elem * list_rbegin (struct list *list) { ASSERT (list != NULL); return list->tail.prev; } /* Returns the element before ELEM in its list. If ELEM is the first element in its list, returns the list head. Results are undefined if ELEM is itself a list head. */ struct list_elem * list_prev (struct list_elem *elem) { ASSERT (is_interior (elem) || is_tail (elem)); return elem->prev; } /* Returns LIST's head. list_rend() is often used in iterating through a list in reverse order, from back to front. Here's typical usage, following the example from the top of list.h: for (e = list_rbegin (&foo_list); e != list_rend (&foo_list); e = list_prev (e)) { struct foo *f = list_entry (e, struct foo, elem); ...do something with f... } */ struct list_elem * list_rend (struct list *list) { ASSERT (list != NULL); return &list->head; } /* Return's LIST's head. list_head() can be used for an alternate style of iterating through a list, e.g.: e = list_head (&list); while ((e = list_next (e)) != list_end (&list)) { ... } */ struct list_elem * list_head (struct list *list) { ASSERT (list != NULL); return &list->head; } /* Return's LIST's tail. */ struct list_elem * list_tail (struct list *list) { ASSERT (list != NULL); return &list->tail; } /* Inserts ELEM just before BEFORE, which may be either an interior element or a tail. The latter case is equivalent to list_push_back(). */ void list_insert (struct list_elem *before, struct list_elem *elem) { ASSERT (is_interior (before) || is_tail (before)); ASSERT (elem != NULL); elem->prev = before->prev; elem->next = before; before->prev->next = elem; before->prev = elem; } /* Removes elements FIRST though LAST (exclusive) from their current list, then inserts them just before BEFORE, which may be either an interior element or a tail. */ void list_splice (struct list_elem *before, struct list_elem *first, struct list_elem *last) { ASSERT (is_interior (before) || is_tail (before)); if (first == last) return; last = list_prev (last); ASSERT (is_interior (first)); ASSERT (is_interior (last)); /* Cleanly remove FIRST...LAST from its current list. */ first->prev->next = last->next; last->next->prev = first->prev; /* Splice FIRST...LAST into new list. */ first->prev = before->prev; last->next = before; before->prev->next = first; before->prev = last; } /* Inserts ELEM at the beginning of LIST, so that it becomes the front in LIST. */ void list_push_front (struct list *list, struct list_elem *elem) { list_insert (list_begin (list), elem); } /* Inserts ELEM at the end of LIST, so that it becomes the back in LIST. */ void list_push_back (struct list *list, struct list_elem *elem) { list_insert (list_end (list), elem); } /* Removes ELEM from its list and returns the element that followed it. Undefined behavior if ELEM is not in a list. It's not safe to treat ELEM as an element in a list after removing it. In particular, using list_next() or list_prev() on ELEM after removal yields undefined behavior. This means that a naive loop to remove the elements in a list will fail: ** DON'T DO THIS ** for (e = list_begin (&list); e != list_end (&list); e = list_next (e)) { ...do something with e... list_remove (e); } ** DON'T DO THIS ** Here is one correct way to iterate and remove elements from a list: for (e = list_begin (&list); e != list_end (&list); e = list_remove (e)) { ...do something with e... } If you need to free() elements of the list then you need to be more conservative. Here's an alternate strategy that works even in that case: while (!list_empty (&list)) { struct list_elem *e = list_pop_front (&list); ...do something with e... } */ struct list_elem * list_remove (struct list_elem *elem) { ASSERT (is_interior (elem)); elem->prev->next = elem->next; elem->next->prev = elem->prev; return elem->next; } /* Removes the front element from LIST and returns it. Undefined behavior if LIST is empty before removal. */ struct list_elem * list_pop_front (struct list *list) { struct list_elem *front = list_front (list); list_remove (front); return front; } /* Removes the back element from LIST and returns it. Undefined behavior if LIST is empty before removal. */ struct list_elem * list_pop_back (struct list *list) { struct list_elem *back = list_back (list); list_remove (back); return back; } /* Returns the front element in LIST. Undefined behavior if LIST is empty. */ struct list_elem * list_front (struct list *list) { ASSERT (!list_empty (list)); return list->head.next; } /* Returns the back element in LIST. Undefined behavior if LIST is empty. */ struct list_elem * list_back (struct list *list) { ASSERT (!list_empty (list)); return list->tail.prev; } /* Returns the number of elements in LIST. Runs in O(n) in the number of elements. */ size_t list_size (struct list *list) { struct list_elem *e; size_t cnt = 0; for (e = list_begin (list); e != list_end (list); e = list_next (e)) cnt++; return cnt; } /* Returns true if LIST is empty, false otherwise. */ bool list_empty (struct list *list) { return list_begin (list) == list_end (list); } /* Swaps the `struct list_elem *'s that A and B point to. */ static void swap (struct list_elem **a, struct list_elem **b) { struct list_elem *t = *a; *a = *b; *b = t; } /* Reverses the order of LIST. */ void list_reverse (struct list *list) { if (!list_empty (list)) { struct list_elem *e; for (e = list_begin (list); e != list_end (list); e = e->prev) swap (&e->prev, &e->next); swap (&list->head.next, &list->tail.prev); swap (&list->head.next->prev, &list->tail.prev->next); } } /* Returns true only if the list elements A through B (exclusive) are in order according to LESS given auxiliary data AUX. */ static bool is_sorted (struct list_elem *a, struct list_elem *b, list_less_func *less, void *aux) { if (a != b) while ((a = list_next (a)) != b) if (less (a, list_prev (a), aux)) return false; return true; } /* Finds a run, starting at A and ending not after B, of list elements that are in nondecreasing order according to LESS given auxiliary data AUX. Returns the (exclusive) end of the run. A through B (exclusive) must form a non-empty range. */ static struct list_elem * find_end_of_run (struct list_elem *a, struct list_elem *b, list_less_func *less, void *aux) { ASSERT (a != NULL); ASSERT (b != NULL); ASSERT (less != NULL); ASSERT (a != b); do { a = list_next (a); } while (a != b && !less (a, list_prev (a), aux)); return a; } /* Merges A0 through A1B0 (exclusive) with A1B0 through B1 (exclusive) to form a combined range also ending at B1 (exclusive). Both input ranges must be nonempty and sorted in nondecreasing order according to LESS given auxiliary data AUX. The output range will be sorted the same way. */ static void inplace_merge (struct list_elem *a0, struct list_elem *a1b0, struct list_elem *b1, list_less_func *less, void *aux) { ASSERT (a0 != NULL); ASSERT (a1b0 != NULL); ASSERT (b1 != NULL); ASSERT (less != NULL); ASSERT (is_sorted (a0, a1b0, less, aux)); ASSERT (is_sorted (a1b0, b1, less, aux)); while (a0 != a1b0 && a1b0 != b1) if (!less (a1b0, a0, aux)) a0 = list_next (a0); else { a1b0 = list_next (a1b0); list_splice (a0, list_prev (a1b0), a1b0); } } /* Sorts LIST according to LESS given auxiliary data AUX, using a natural iterative merge sort that runs in O(n lg n) time and O(1) space in the number of elements in LIST. */ void list_sort (struct list *list, list_less_func *less, void *aux) { size_t output_run_cnt; /* Number of runs output in current pass. */ ASSERT (list != NULL); ASSERT (less != NULL); /* Pass over the list repeatedly, merging adjacent runs of nondecreasing elements, until only one run is left. */ do { struct list_elem *a0; /* Start of first run. */ struct list_elem *a1b0; /* End of first run, start of second. */ struct list_elem *b1; /* End of second run. */ output_run_cnt = 0; for (a0 = list_begin (list); a0 != list_end (list); a0 = b1) { /* Each iteration produces one output run. */ output_run_cnt++; /* Locate two adjacent runs of nondecreasing elements A0...A1B0 and A1B0...B1. */ a1b0 = find_end_of_run (a0, list_end (list), less, aux); if (a1b0 == list_end (list)) break; b1 = find_end_of_run (a1b0, list_end (list), less, aux); /* Merge the runs. */ inplace_merge (a0, a1b0, b1, less, aux); } } while (output_run_cnt > 1); ASSERT (is_sorted (list_begin (list), list_end (list), less, aux)); } /* Inserts ELEM in the proper position in LIST, which must be sorted according to LESS given auxiliary data AUX. Runs in O(n) average case in the number of elements in LIST. */ void list_insert_ordered (struct list *list, struct list_elem *elem, list_less_func *less, void *aux) { struct list_elem *e; ASSERT (list != NULL); ASSERT (elem != NULL); ASSERT (less != NULL); for (e = list_begin (list); e != list_end (list); e = list_next (e)) if (less (elem, e, aux)) break; return list_insert (e, elem); } /* Iterates through LIST and removes all but the first in each set of adjacent elements that are equal according to LESS given auxiliary data AUX. If DUPLICATES is non-null, then the elements from LIST are appended to DUPLICATES. */ void list_unique (struct list *list, struct list *duplicates, list_less_func *less, void *aux) { struct list_elem *elem, *next; ASSERT (list != NULL); ASSERT (less != NULL); if (list_empty (list)) return; elem = list_begin (list); while ((next = list_next (elem)) != list_end (list)) if (!less (elem, next, aux) && !less (next, elem, aux)) { list_remove (next); if (duplicates != NULL) list_push_back (duplicates, next); } else elem = next; } /* Returns the element in LIST with the largest value according to LESS given auxiliary data AUX. If there is more than one maximum, returns the one that appears earlier in the list. If the list is empty, returns its tail. */ struct list_elem * list_max (struct list *list, list_less_func *less, void *aux) { struct list_elem *max = list_begin (list); if (max != list_end (list)) { struct list_elem *e; for (e = list_next (max); e != list_end (list); e = list_next (e)) if (less (max, e, aux)) max = e; } return max; } /* Returns the element in LIST with the smallest value according to LESS given auxiliary data AUX. If there is more than one minimum, returns the one that appears earlier in the list. If the list is empty, returns its tail. */ struct list_elem * list_min (struct list *list, list_less_func *less, void *aux) { struct list_elem *min = list_begin (list); if (min != list_end (list)) { struct list_elem *e; for (e = list_next (min); e != list_end (list); e = list_next (e)) if (less (e, min, aux)) min = e; } return min; }