
Project 2: User Programs

Presented by

Jaishankar Sundararaman

21 February 2008

Till now …

 All code part of Pintos Kernel

 Code compiled directly with the kernel

 This required that the tests call some functions
whose interface should remain unmodified

 From now on, run user programs on top of
kernel

 Freedom to modify the kernel to make the
user programs work

Why Project 2 is not Project 1?

Timer

Interrupts

Other

IRQs

User Programs

Kernel

int 0x30 Exceptions

Project 2

Tests

Project 1

Tests

lib/user/syscall.c

filesystem

syscall layer exc handling

A Comparison…

 Sample Project 1 Test Code (alarm-zero.c)

 Sample Project 2 Test Code (close-normal.c)

Void test_alarm_zero (void) {

timer_sleep (0);

pass ();

}

void test_main (void) {

int handle;

CHECK ((handle = open ("sample.txt")) > 1,

"open \"sample.txt\"");

msg ("close \"sample.txt\"");

close (handle);

}

Kernel Function…

(Operates from kernel space)

System call…

(Operates from user space)

Using the File system

 May need to interact with file system

 Do not modify the file system!

 Certain limitations (till Project 4)
 No internal synchronization

 Fixed file size

 No subdirectories

 File names limited to 14 chars

 System crash might corrupt the file system

 Files to take a look at: ‘filesys.h’ & ‘file.h’

Some commands

 Creating a simulated disk
 pintos-mkdisk fs.dsk 2

 Formatting the disk
 pintos -f –q

 This will only work after your kernel is built !

 Copying the program into the disk
 pintos -p ../../examples/echo -a echo -- -q

 Running the program
 pintos -q run ’echo x’

 Single command:
 pintos --fs-disk=2 -p ../../examples/echo -a echo -- -f -q run ’echo x’

 $ make check – Builds the disk automatically
 Copy&paste the commands make check does!

Various directories

 Few user programs:

 src/examples

 Relevant files:

 userprog/

 Other files:

 threads/

Requirements

 Process Termination Messages

 Argument Passing

 System calls

 Deny writes to executables

Process Termination

 Process Terminates

 printf ("%s: exit(%d)\n",...);

 for eg: args-single: exit(0)

 Do not print any other message!

Program

name

Return Code

Argument Passing

 Pintos currently lacks
argument passing. You
Implement it!

 Change *esp = PHYS_BASE
to *esp = PHYS_BASE – 12
in setup_stack() to get
started

 Change process_execute() in
process.c to process multiple
arguments

 Could limit the arguments to
fit in a page(4 kb)

 String Parsing: strtok_r() in
lib/string.h

pgm.c

main(int argc,
char *argv[]) {

…

}

$ pintos run „pgm alpha beta‟

argc = 3

argv[0] = “pgm”

argv[1] = “alpha”

argv[2] = “beta”

Example taken from Abdelmounaam Rezgui’s presentation

Memory layout

User stack

Uninitialized data segment

(Block Starting Symbol, BSS)

Initialized data segment

Code segment

0

PHYS_ BASE

Grows

downward

Grows

upward

4GB
Kernel

Virtual

Memory

User

Virtual

Memory

0x 08048000

Invalid Pointer Area

(for User Programs)

PHYS_BASE = 3GB

Figure taken from Abdelmounaam Rezgui’s presentation

Setting up the Stack

How to setup the stack for the program - /bin/ls –l foo bar

Setting up the Stack… Contd

bffffffc0 00 00 00 00 | |

bffffffd0 04 00 00 00 d8 ff ff bf-ed ff ff bf f5 ff ff bf |................|

bffffffe0 f8 ff ff bf fc ff ff bf-00 00 00 00 00 2f 62 69 |............./bi|

bfffffff0 6e 2f 6c 73 00 2d 6c 00-66 6f 6f 00 62 61 72 00 |n/ls.-l.foo.bar.|

System Calls

 Pintos lacks support for
system calls currently!

 Implement the system call
handler in userprog/syscall.c

 System call numbers
defined in lib/syscall-nr.h

 Process Control: exit, exec,
wait

 File system: create, remove,
open, filesize, read, write,
seek, tell, close

 Others: halt

static void

syscall_handler (struct intr_frame *f

UNUSED)

{

printf ("system call!\n");

thread_exit ();

}

Syscall handler currently …

System Call Details

 Types of Interrupts – External and
Internal

 System calls – Internal Interrupts or
Software Exceptions

 80x86 – ‘int’ instruction to invoke
system calls

 Pintos – ‘int $0x30’ to invoke system call

Continued…

 A system call has:

 System call number

 (possibly) arguments

 When syscall_handler() gets control:

 System calls that return
a value () must modify
f->eax

Sys. Call #

Arg #2

Arg #1

.

.

.

Caller’s User Stack

syscall_handler (struct intr_frame *f) {

f->esp

….

f->eax = … ;

}

Figure taken from Abdelmounaam Rezgui’s presentation

System calls – File system

 Decide on how to implement the file descriptors

 O(n) data structures… perfectly fine!

 Access granularity is the entire file system

 Have 1 global lock!

 write() – fd 1 writes to console

 use putbuf() to write entire buffer to console

 read() – fd 0 reads from console

 use input_getc() to get input from keyboard

 Implement the rest of the system calls

System calls – Process Control

 wait(pid) – Waits for process pid
to die and returns the status pid
returned from exit

 Returns -1 if

 pid was terminated by the
kernel

 pid does not refer to child of the
calling thread

 wait() has already been called
for the given pid

 exec(cmd) – runs the executable
whose name is given in
command line

 returns -1 if the program cannot
be loaded

 exit(status) – terminates the
current program, returns status

 status of 0 indicates success,
non zero otherwise

Parent:Parent:

exec()

Parent:Parent:

wait()

process

executes

Parent

process

executes

Child

process

executes

Child

process

executes

Child

process

Child

process

exits

OS notifies

Figure taken and modified from Dr. Back’s lecture – CS3204 - Fall 2006

Process Control – continued…

 Implement process_wait() in
process.c

 Then, implement wait() using
process_wait()

 Cond variables and/or
semaphores will help

 Think about what
semaphores may be used
for and how they must be
initialized

 Some Conditions to take care!

 Parent may or may not wait
for its child

 Parent may call wait() after
child terminates!

main() {

int i; pid_t p;

p = exec(“pgm a b”);

// i = wait (p);

}

int

process_wait (tid_t

child_tid UNUSED)

{

return -1;

}

Memory Access

 Invalid pointers must be rejected. Why?

 Kernel has access to all of physical memory including
that of other processes

 Kernel like user process would fault when it tries to
access unmapped addresses

 User process cannot access kernel virtual
memory

 User Process after it has entered the kernel can
access kernel virtual memory and user virtual
memory

 How to handle invalid memory access?

Memory Access – contd…

 Two methods to handle invalid memory access

 Verify the validity of user provided pointer and then
dereference it

 Look at functions in userprog/pagedir.c,
threads/vaddr.h

 Strongly recommended!

 Check if user pointer is below PHYS_BASE and
dereference it

 Could cause page fault

 Handle the page fault by modifying the page_fault()
code in userprog/exception.c

 Make sure that resources are not leaked

Some Issues to look at…

 Check the validity of the system call
parameters

 Every single location should be checked for
validity before accessing it. For e.g. not only
f->esp, but also f->esp +1, f->esp+2 and
`f->esp+3 should be checked

 Read system call parameters into kernel
memory (except for long buffers)

 copy_in function recommended!

Denying writes to Executables

 Use file_deny_write() to prevent writes
to an open file

 Use file_allow_write() to re enable write

 Closing a file will automatically re enable
writes

Suggested Order of Implementation

 Change *esp = PHYS_BASE to *esp =
PHYS_BASE – 12 to get started

 Implement the system call infrastructure

 Change process_wait() to a infinite loop to
prevent pintos getting powered off before the
process gets executed

 Implement exit system call

 Implement write system call

 Start making other changes

Misc

 Deadline: Mar 12, 11:59 pm

 Do not forget the design document

 Must be done individually

 Good Luck!

