
1

CS 3204
Operating Systems

Godmar Back

Project 4 Help Session

11/13/2007CS 3204 Fall 2007 2

Project 4

• Final Task: Build a simple file system!
– “Easier than Project 3” – maybe
– But: definitely more lines of code for complete

solution
• And no room for errors – it’s a filesystem, after all!

• Subtasks:
– Buffer Cache
– Extensible Files
– Subdirectories

• Again open-ended design problem

Synchronization

11/13/2007CS 3204 Fall 2007 3

How Pintos’s Filesystem Is Used

bootloader
kernel
(0,0)

filesystem
disk
(0,1)

scratch
disk
(1,0)

swap
disk
(1,1)

put

get

pintos script
writes/reads
files

your kernel
is loaded
from

VM
swapping

pintos applications
11/13/2007CS 3204 Fall 2007 4

Project Requirements
• Your kernel must

– Be able to format the disk when asked (write
structures for an initial, empty filesystem on it)

– Be able to copy files onto it when called from
fsutil_put() (which happens before process_execute is
called for the first time) – and copy files off of it

– Be able to support required system calls
• New calls: mkdir, readdir, inumber, isdir, chdir

– Be able to write data back to persistent storage
– Be able to copy files from it when called from

fsutil_get()

11/13/2007CS 3204 Fall 2007 5

Project Requirements (cont’d)
• Only your kernel writes to and reads from your

disk
• Don’t have to follow any prescribed layout
• Can pick any layout strategy that doesn’t suffer

from external fragmentation and can grow files
– recommend Unix-style direct, single indirect, double

indirect inode layout – but feel free to be creative
• Can pick any on-disk inode layout (you must

design your own, the existing one does not
work)

• Can pick any directory layout (although existing
directory layout suffices)

11/13/2007CS 3204 Fall 2007 6

Base Filesystem Layout

Disk Sectors
.........9876543210

inode #
name[15]
inuse=0

inode #
name[15]
inuse=0

inode #
name[15]
inuse=0

inode #
name[15]
inuse=0

Root Directory (16 entries à 20bytes < 1 sector)

Root
Directory

Inode
Start=6

Length=1 multi-oom executable
File

Inode
Start=8

Length=5

inode #7
multi-oom
inuse=1

Freemap
File Inode

Start=2
Length=4

Free Map
11100101

2

11/13/2007CS 3204 Fall 2007 7

Recommended Order
1. Buffer Cache – implement &

pass all regression tests
2. Extensible Files – implement &

pass file growth tests
3. Subdirectories
4. Miscellaneous: cache

readahead, reader/writer
fairness, deletion etc.

Synchronization

(at some point)
drop global fslock

You should think about synchronization
throughout

11/13/2007CS 3204 Fall 2007 8

The Big Picture

PCBPCB

…
5
4
3
2
1
0

…
5
4
3
2
1
0

Data structures to keep
track of open files

struct file
inode + position

struct dir
inode + position

struct inode

Data structures to keep
track of open files

struct file
inode + position

struct dir
inode + position

struct inode

Per-process
file descriptor
table

B
uffer C

ache
B

uffer C
ache

Open file table Free Map

files
(including

directories)
inodes,

index blocks

Cached data and
metadata in buffer
cache

On-Disk
Data Structures

?

Root Dir Inode

11/13/2007CS 3204 Fall 2007 9

Buffer Cache (1): Overview

• Should cache accessed
disk blocks in memory

• Buffer cache should be
only interface to disk: all
disk accesses should go
through it
– Ensures consistency!

file_*() dir_*()

inode_*()

cache_*()

disk_*()

system calls, fs utils

11/13/2007CS 3204 Fall 2007 10

Buffer Cache (2): Design

512 bytes

512 bytes

512 bytes

512 bytes

512 bytes

512 bytes

512 bytes
64

desc

desc

desc

desc

desc

desc

desc

Cache Block Descriptor
- disk_sector_id, if in use
- dirty bit
- valid bit
- # of readers
- # of writers
- # of pending read/write requests
- lock to protect above variables
- signaling variables to signal
availability changes
- usage information for eviction
policy
- data (pointer or embedded)

11/13/2007CS 3204 Fall 2007 11

Buffer Cache (3): Interface
// cache.h
struct cache_block; // opaque type
// reserve a block in buffer cache dedicated to hold this sector
// possibly evicting some other unused buffer
// either grant exclusive or shared access
struct cache_block * cache_get_block (disk_sector_t sector, bool exclusive);
// release access to cache block
void cache_put_block(struct cache_block *b);
// read cache block from disk, returns pointer to data
void *cache_read_block(struct cache_block *b);
// fill cache block with zeros, returns pointer to data
void *cache_zero_block(struct cache_block *b);
// mark cache block dirty (must be written back)
void cache_mark_block_dirty(struct cache_block *b);
// not shown: initialization, readahead, shutdown

// cache.h
struct cache_block; // opaque type
// reserve a block in buffer cache dedicated to hold this sector
// possibly evicting some other unused buffer
// either grant exclusive or shared access
struct cache_block * cache_get_block (disk_sector_t sector, bool exclusive);
// release access to cache block
void cache_put_block(struct cache_block *b);
// read cache block from disk, returns pointer to data
void *cache_read_block(struct cache_block *b);
// fill cache block with zeros, returns pointer to data
void *cache_zero_block(struct cache_block *b);
// mark cache block dirty (must be written back)
void cache_mark_block_dirty(struct cache_block *b);
// not shown: initialization, readahead, shutdown

11/13/2007CS 3204 Fall 2007 12

Buffer Cache (4): Notes
• Interface is just a suggestion
• Definition as static array of 64 blocks ok
• Use structure hiding (don’t export cache_block struct

outside cache.c)
• Must have explicit per-block locking (can’t use Pintos’s

lock since they do not allow for multiple readers)
• Should provide solution to multiple reader, single writer

synchronization problem that starves neither readers nor
writers:
– Use condition variables!

• Eviction: use LRU (or better)
– Can use Pintos list_elem to implement eviction policy, such as

LRU via stack implementation

3

11/13/2007CS 3204 Fall 2007 13

Buffer Cache (5):
Prefetching
• Would like to bring next

block to be accessed into
cache before it’s accessed

• Must be done in parallel
– use daemon thread and

producer/consumer pattern
• Note: next(n) not always

equal to n+1
• Don’t initiate read_ahead if

next(n) is unknown or would
require another disk access
to find out

b = cache_get_block(n, _);
cache_read_block(b);
cache_readahead(next(n));

b = cache_get_block(n, _);
cache_read_block(b);
cache_readahead(next(n));

queue q;
cache_readahead(sector s) {

q.lock();
q.add(request(s));
qcond.signal();
q.unlock();

}
cache_readahead_daemon() {
while (true) {
q.lock();
while (q.empty())
qcond.wait();

s = q.pop();
q.unlock();
read sector(s);

}
}

queue q;
cache_readahead(sector s) {

q.lock();
q.add(request(s));
qcond.signal();
q.unlock();

}
cache_readahead_daemon() {
while (true) {
q.lock();
while (q.empty())
qcond.wait();

s = q.pop();
q.unlock();
read sector(s);

}
}

11/13/2007CS 3204 Fall 2007 14

Multi-Level Indices
• Need only single&double

indirect blocks
1
2
3
..
N

FLI
SLI
TLI

1

2

index

N

index2

index

index

N+IN+1

N+I+1

index3 index2

Direct
Blocks

Indirect
Block

Double
Indirect
Block

Triple
Indirect
Block index N+I+I2

11/13/2007CS 3204 Fall 2007 15

34350 1 2 3 4 5 6 7 121314 2021 2728

Logical View (Per File) offset in file

Physical View (On Disk) (ignoring other files)

Inode

Data

Index

Index2

sector numbers on disk

11/13/2007CS 3204 Fall 2007 16

34350 1 2 3 4 5 6 7 121314 2021 2728

Logical View (Per File) offset in file

Physical View (On Disk) (ignoring other files)

Inode

Data

Index

Index2

sector numbers on disk

…
5
12

4
3
2
1

…
10
11

9
8
7
6

…
-1
-1

34
27
20
13

…
18
19

17
16
15
14

11/13/2007CS 3204 Fall 2007 17

Multi-Level Indices (cont’d)

• How many levels do we need?
• Max Disk size: 8MB = 16,384 Sectors
• Assume sector number takes 2 or 4 bytes,

can store 256 or 128 in one sector
• Filesize(using only direct blocks) < 256
• Filesize(direct + single indirect block) <

2*256
• File (direct + single indirect + double

indirect) < 2*256 + 256^2 = 66,048
11/13/2007CS 3204 Fall 2007 18

Files vs. Inode vs. Directories
• Offset management in struct file etc. should not

need any changes
– If there’s no sharing of struct file/dir instances

between processes, then there are no concurrency
issues since Pintos’s processes are single-threaded!

• You have to completely redesign struct
inode_disk to fit your layout

• You will have to change struct inode
– struct inode are necessarily shared between

processes – since they represent files on disk!
– struct inode can no longer embed struct inode_disk

(inode_disk should be stored in buffer cache)

4

11/13/2007CS 3204 Fall 2007 19

struct inode vs struct inode_disk
struct inode_disk

{
disk_sector_t start; /* First data sector. */
off_t length; /* File size in bytes. */
unsigned magic; /* Magic number. */
uint32_t unused[125];/* Not used. */

};

struct inode_disk
{

disk_sector_t start; /* First data sector. */
off_t length; /* File size in bytes. */
unsigned magic; /* Magic number. */
uint32_t unused[125];/* Not used. */

};

/* In-memory inode. */
struct inode

{
struct list_elem elem; /* Element in inode list. */
disk_sector_t sector; /* Sector number of disk location. */
int open_cnt; /* Number of openers. */
bool removed; /* True if deleted, false otherwise. */
int deny_write_cnt; /* 0: writes ok, >0: deny writes. */
struct inode_disk data; /* Inode content. */

};

/* In-memory inode. */
struct inode

{
struct list_elem elem; /* Element in inode list. */
disk_sector_t sector; /* Sector number of disk location. */
int open_cnt; /* Number of openers. */
bool removed; /* True if deleted, false otherwise. */
int deny_write_cnt; /* 0: writes ok, >0: deny writes. */
struct inode_disk data; /* Inode content. */

};

store in buffer cache

redesign for indexed approach

11/13/2007CS 3204 Fall 2007 20

Extending a file
• Seek past end of file & write extends a file
• Space in between is filled with zeros

– Can extend sparsely (use “nothing here” marker in
index blocks)

• Consistency guarantee on file extension:
– If A extends & B reads, B may read all, some, or none

of what A wrote
• But never something else!

– Implication: do not update & unlock metadata
structures (e.g., inode length) until data is in buffer
cache

11/13/2007CS 3204 Fall 2007 21

Subdirectories
• Support nested directories (work as usual)
• Requires:

– Keeping track of type of file in on-disk inode
– Distinction between file descriptors in syscall layer – e.g., must reject

write() to open directory
• Should only require minor changes to how individual directories are

implemented (e.g., as a linear list – should be able to reuse existing
code)
– Must implement “.” and “..” – simple solution is to create the two entries

on disk when a directory is created.
– Must support path names such as ///a/b/../c/./d
– Path components can remain <= 14 in length
– Once file growth works, directory growth should work “automatically”

• Implement system calls: readdir, mkdir, rmdir
– Need a way to test whether directory is empty
– readdir() should not return . and ..

11/13/2007CS 3204 Fall 2007 22

Subdirectories: Lookup
• Implement absolute & relative paths
• Use strtok_r to split path

– Recall that strtok_r() destroys its argument - make sure you
create copy if necessary

– Make sure you operate on copied-in string
• Walk hierarchy, starting from root directory (for absolute

paths); current directory (for relative paths)
• All components except last must exist & be directories
• Make sure you don’t leak memory, or you fail dir-vine.

11/13/2007CS 3204 Fall 2007 23

Current Directory

• Need to keep track of current directory
– in struct thread
– be aware of possible initialization order issues: before

first task starts, get/put must work but
process_execute hasn’t been called

• When an attempt is made to delete the current
directory, or any open directory, either
– Reject
– Allow, but don’t allow further use

11/13/2007CS 3204 Fall 2007 24

Synchronization Issues (1)
• Always consider: what lock (or other protection

mechanism) protects which field:
– If lock L protects data D, then all accesses to D must be within

lock_acquire(&L); …. Update D …; lock_release(&L);
• Embed locks in objects or define as static variables

where appropriate (struct inode)
• For buffer cache entries, must build new synchronization

structure (Single Writer/Multiple Reader lock without
starvation) on top of existing ones (locks + condition
variables)

• For directories, can use lock on underlying inode directly
to guarantee exclusive access

5

11/13/2007CS 3204 Fall 2007 25

Synchronization Issues (2)
• Should be fine-grained: independent operations should

proceed in parallel, for example
– Don’t lock entire buffer cache when waiting for read/write access

of individual buffer cache entry
– Example: don’t lock entire path resolution component when

looking up file along /a/b/c/d
– Files should support multiple readers & writers

• Data writes do not require exclusive access to buffer cache block
holding the data!

– Process removing a file in directory A should not wait for
removing file in directory B

• For full credit, must have dropped global fs lock
– Can’t see whether any of this works until you have done so

11/13/2007CS 3204 Fall 2007 26

Free Map Management
• Can leave almost unchanged
• Read from disk on startup, flush on shutdown
• Instead of allocating n sectors at file creation

time, now allocate 1 sector at a time, and only
when file is growing
– Implement extents for extra performance + credit

• But: must still support creating files that have an
initial size greater than 0; easy to do:
– If file_create(“…”, m) is called with m > 0, simulate

write_at(offset=m, 1byte of data); to expand to
appropriate length

• Don’t forget to protect free_map() with lock

11/13/2007CS 3204 Fall 2007 27

Grading Hints
• Extended tests won’t fully pass until file growth + subdirectories are

sufficiently implemented such that ‘tar’ works.
• Core parts (majority of credit) of assignment are

– Buffer cache
– Extensible files
– Subdirectories

• For this assignment, credit for regression tests will depend on how
many parts (n = 0, 1, 2) of the assignment you’ve implemented
– Credit for regression tests = Reported TestScore * n/3
– Don’t get credit for resubmitting P2.

• Tests will not detect
– If you keep global fslock or not
– If you have a buffer cache
– TAs will grade those aspects by inspection/reading your design

document
• Good Luck!

