
1

CS 3204
Operating Systems

Godmar Back

Lecture 9

2/15/2007CS 3204 Spring 2007 2

Announcements

• Project 1 Feb 20 (Tuesday) 11:59pm
– Will announce additional office hours this

week
– Use forum, ask questions

• Project 0 graded, will be handed back
before Thursday lecture
– Read feedback before submitting project 1

• Reading:
– Read carefully 1.5, 3.1-3.3, 6.1-6.4

2/15/2007CS 3204 Spring 2007 3

Project 1 Suggested Timeline
• End of last week: Feb 2:

– Have read relevant project documentation, set up CVS, built and
run your first kernel, designed your data structures for alarm
clock

• Alarm clock by Feb 6
• Basic priority by Feb 8
• Priority Inheritance & Advanced Scheduler will take the

most time to implement & debug, start them in parallel
– Should have design for priority inheritance figured out by Feb 13
– Develop & test fixed-point layer independently by Feb 13

• Due date Feb 20

Concurrency & Synchronization

continued

2/15/2007CS 3204 Spring 2007 5

Recap: Synchronization

• Disabling IRQs – use to protect against
concurrent access by IRQ handler

• Locks – use to protect against concurrent
access by other threads

• Direct implementation of locks on uniprocessor
– Requires disable_preemption
– Involves state change of thread if contended

• Today: multiprocessor locks, locking strategies

2/15/2007CS 3204 Spring 2007 6

Multiprocessor Locks
• Can’t stop threads running on other processors

– too expensive (interprocessor irq)
– also would create conflict with protection (locking =

unprivileged op, stopping = privileged op), involving
the kernel in *every* acquire/release

• Instead: use atomic instructions provided by
hardware
– E.g.: test-and-set, atomic-swap, compare-and-

exchange, fetch-and-add
– All variations of “read-and-modify” theme

• Locks are built on top of these

2

2/15/2007CS 3204 Spring 2007 7

Atomic Swap

// In C, an atomic swap instruction would like this
void
atomic_swap(int *memory1, int *memory2)
{

[disable interrupts in CPU;
lock memory bus for other processors]

int tmp = *memory1;
*memory1 = *memory2;
*memory2 = tmp;
[unlock memory bus; reenable interrupts]

}

// In C, an atomic swap instruction would like this
void
atomic_swap(int *memory1, int *memory2)
{

[disable interrupts in CPU;
lock memory bus for other processors]

int tmp = *memory1;
*memory1 = *memory2;
*memory2 = tmp;
[unlock memory bus; reenable interrupts]

}

CPU1CPU1 CPU2CPU2

MemoryMemory

memory bus

2/15/2007CS 3204 Spring 2007 8

Spinlocks
lock_acquire(struct lock *l)
{

int lockstate = LOCKED;
while (lockstate == LOCKED) {

atomic_swap(&lockstate,
&l->state);

}
}

lock_acquire(struct lock *l)
{

int lockstate = LOCKED;
while (lockstate == LOCKED) {

atomic_swap(&lockstate,
&l->state);

}
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

• Thread spins until it acquires lock
– Q1: when should it block instead?
– Q2: what if spin lock holder is preempted?

2/15/2007CS 3204 Spring 2007 9

Spinning vs Blocking

• Blocking has a cost
– Shouldn’t block if lock becomes available in

less time than it takes to block
• Strategy: spin for time it would take to

block
– Even in worst case, total cost for lock_acquire

is less than 2*block time

2/15/2007CS 3204 Spring 2007 10

Spinlocks vs Disabling Preemption
• What if spinlocks were used on single CPU? Consider:

– thread 1 takes spinlock
– thread 1 is preempted
– thread 2 with higher priority runs
– thread 2 tries to take spinlock, finds it taken
– thread 2 spins forever → deadlock!

• Thus in practice, usually combine spinlocks with
disabling preemption
– E.g., spin_lock_irqsave() in Linux

• UP kernel: reduces to disable_preemption
• SMP kernel: disable_preemption + spinlock

• Spinlocks are used when holding resources for small
periods of time (same rule as for when it’s ok to disable
irqs)

2/15/2007CS 3204 Spring 2007 11

Spinlocks (Faster)
lock_acquire(struct lock *l)
{

int lockstate = LOCKED;
while (lockstate == LOCKED) {

while (l->state == LOCKED)
continue;

atomic_swap(&lockstate,
&l->state);

}
}

lock_acquire(struct lock *l)
{

int lockstate = LOCKED;
while (lockstate == LOCKED) {

while (l->state == LOCKED)
continue;

atomic_swap(&lockstate,
&l->state);

}
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

• Only try “expensive” atomic_swap instruction if
you’ve seen lock in unlocked state

2/15/2007CS 3204 Spring 2007 12

Locks: Ownership & Recursion
• Locks typically (not always) have notion of

ownership
– Only lock holder is allowed to unlock
– See Pintos lock_held_by_current_thread()

• What if lock holder tries to acquire locks it
already holds?
– Nonrecursive locks: deadlock!
– Recursive locks:

• inc counter
• dec counter on lock_release
• release when zero

3

2/15/2007CS 3204 Spring 2007 13

Implementing Locks:
Practical Issues

• How expensive are locks?
• Two considerations:

– Cost to acquire uncontended lock
• UP Kernel: disable/enable irq + memory access
• In other scenarios: needs atomic instruction (relatively expensive in

terms of processor cycles, especially if executed often)
– Cost to acquire contended lock

• Spinlock: blocks current CPU entirely (if no blocking is employed)
• Regular lock: cost at least two context switches, plus associated

management overhead

• Conclusions
– Optimizing uncontended case is important
– “Hot locks” can sack performance easily

2/15/2007CS 3204 Spring 2007 14

- Note -
• Examples on following slides assume a slightly

different version of Project 0 (used last
semesters) where used blocks were also kept on
a list, the “used list.”
– mem_alloc would add a block to used list
– mem_free would remove block from used list

• In that case, the code needed to protect both the
free and used list

• The following slides discuss correct and
incorrect way of doing so

2/15/2007CS 3204 Spring 2007 15

Using Locks
• Associate each shared variable with lock L

– “lock L protects that variable”
static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock listlock; /* Protects usedlist & freelist */

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock listlock; /* Protects usedlist & freelist */

void *mem_alloc(…)
{

block *b;
lock_acquire(&listlock);
b = alloc_block_from_freelist();
insert_into_usedlist(&usedlist, b);
lock_release(&listlock);
return b->data;

}

void *mem_alloc(…)
{

block *b;
lock_acquire(&listlock);
b = alloc_block_from_freelist();
insert_into_usedlist(&usedlist, b);
lock_release(&listlock);
return b->data;

}

void mem_free(block *b)
{

lock_acquire(&listlock);
list_remove(&b->elem);
coalesce_into_freelist(&freelist, b);
lock_release(&listlock);

}

void mem_free(block *b)
{

lock_acquire(&listlock);
list_remove(&b->elem);
coalesce_into_freelist(&freelist, b);
lock_release(&listlock);

}

2/15/2007CS 3204 Spring 2007 16

How many locks should I use?
• Could use one lock for all shared variables

– Disadvantage: if a thread holding the lock blocks, no
other thread can access any shared variable, even
unrelated ones

– Sometimes used when retrofitting non-threaded code
into threaded framework

– Examples:
• “BKL” Big Kernel Lock in Linux
• fslock in Pintos Project 2

• Ideally, want fine-grained locking
– One lock only protects one (or a small set of)

variables – how to pick that set?

2/15/2007CS 3204 Spring 2007 17

Multiple locks, the wrong way
static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock alloclock; /* Protects allocations */
static struct lock freelock; /* Protects deallocations */

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock alloclock; /* Protects allocations */
static struct lock freelock; /* Protects deallocations */

void *mem_alloc(…)
{

block *b;
lock_acquire(&alloclock);
b = alloc_block_from_freelist();
insert_into_usedlist(&usedlist, b);
lock_release(&alloclock);
return b->data;

}

void *mem_alloc(…)
{

block *b;
lock_acquire(&alloclock);
b = alloc_block_from_freelist();
insert_into_usedlist(&usedlist, b);
lock_release(&alloclock);
return b->data;

}

void mem_free(block *b)
{

lock_acquire(&freelock);
list_remove(&b->elem);
coalesce_into_freelist(&freelist, b);
lock_release(&freelock);

}

void mem_free(block *b)
{

lock_acquire(&freelock);
list_remove(&b->elem);
coalesce_into_freelist(&freelist, b);
lock_release(&freelock);

}

Wrong: locks protect data structures, not
code blocks! Allocating thread & deallocating
thread could collide

Wrong: locks protect data structures, not
code blocks! Allocating thread & deallocating
thread could collide

2/15/2007CS 3204 Spring 2007 18

Multiple locks, 2nd try
static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

void *mem_alloc(…)
{

block *b;
lock_acquire(&freelock);
b = alloc_block_from_freelist();
lock_acquire(&usedlock);
insert_into_usedlist(&usedlist, b);
lock_release(&freelock);
lock_release(&usedlock);
return b->data;

}

void *mem_alloc(…)
{

block *b;
lock_acquire(&freelock);
b = alloc_block_from_freelist();
lock_acquire(&usedlock);
insert_into_usedlist(&usedlist, b);
lock_release(&freelock);
lock_release(&usedlock);
return b->data;

}

void mem_free(block *b)
{

lock_acquire(&usedlock);
list_remove(&b->elem);
lock_acquire(&freelock);
coalesce_into_freelist(&freelist, b);
lock_release(&usedlock);
lock_release(&freelock);

}

void mem_free(block *b)
{

lock_acquire(&usedlock);
list_remove(&b->elem);
lock_acquire(&freelock);
coalesce_into_freelist(&freelist, b);
lock_release(&usedlock);
lock_release(&freelock);

}
Also wrong: deadlock!
Always acquire multiple locks in same order -
Or don’t hold them simultaneously

Also wrong: deadlock!
Always acquire multiple locks in same order -
Or don’t hold them simultaneously

4

2/15/2007CS 3204 Spring 2007 19

Multiple locks, correct (1)
static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

void *mem_alloc(…)
{

block *b;
lock_acquire(&usedlock);
lock_acquire(&freelock);
b = alloc_block_from_freelist();
insert_into_usedlist(&usedlist, b);
lock_release(&freelock);
lock_release(&usedlock);
return b->data;

}

void *mem_alloc(…)
{

block *b;
lock_acquire(&usedlock);
lock_acquire(&freelock);
b = alloc_block_from_freelist();
insert_into_usedlist(&usedlist, b);
lock_release(&freelock);
lock_release(&usedlock);
return b->data;

}

void mem_free(block *b)
{

lock_acquire(&usedlock);
lock_acquire(&freelock);
list_remove(&b->elem);
coalesce_into_freelist(&freelist, b);
lock_release(&freelock);
lock_release(&usedlock);

}

void mem_free(block *b)
{

lock_acquire(&usedlock);
lock_acquire(&freelock);
list_remove(&b->elem);
coalesce_into_freelist(&freelist, b);
lock_release(&freelock);
lock_release(&usedlock);

}
Correct, but inefficient!
Locks are always held simultaneously,
one lock would suffice

Correct, but inefficient!
Locks are always held simultaneously,
one lock would suffice

2/15/2007CS 3204 Spring 2007 20

Multiple locks, correct (2)
static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

void *mem_alloc(…)
{

block *b;
lock_acquire(&freelock);
b = alloc_block_from_freelist();
lock_release(&freelock);
lock_acquire(&usedlock);
insert_into_usedlist(&usedlist, b);
lock_release(&usedlock);
return b->data;

}

void *mem_alloc(…)
{

block *b;
lock_acquire(&freelock);
b = alloc_block_from_freelist();
lock_release(&freelock);
lock_acquire(&usedlock);
insert_into_usedlist(&usedlist, b);
lock_release(&usedlock);
return b->data;

}

void mem_free(block *b)
{

lock_acquire(&usedlock);
list_remove(&b->elem);
lock_release(&usedlock);
lock_acquire(&freelock);
coalesce_into_freelist(&freelist, b);
lock_release(&freelock);

}

void mem_free(block *b)
{

lock_acquire(&usedlock);
list_remove(&b->elem);
lock_release(&usedlock);
lock_acquire(&freelock);
coalesce_into_freelist(&freelist, b);
lock_release(&freelock);

}

Correct, but not necessarily better!
On uniprocessor:
No throughput from fine-grained locking, since no
blocking inside critical sections – but pay twice the price
compared to one-lock solution
On multiprocessor:
Gain from being able to manipulate free & used
lists in parallel, but increased risk of contended locks

Correct, but not necessarily better!
On uniprocessor:
No throughput from fine-grained locking, since no
blocking inside critical sections – but pay twice the price
compared to one-lock solution
On multiprocessor:
Gain from being able to manipulate free & used
lists in parallel, but increased risk of contended locks

2/15/2007CS 3204 Spring 2007 21

Conclusion
• Choosing which lock should protect which

shared variable(s) is not easy – must weigh:
– Whether all variables are always accessed together

(use one lock if so)
– Whether code inside critical section can block (if not,

no throughput gain from fine-grained locking on
uniprocessor)

– Whether there is a consistency requirement if multiple
variables are accessed in related sequence (must
hold single lock if so)

• See “Subtle race condition in Java” below
– Cost of multiple calls to lock/unlock (increasing

parallelism advantages may be offset by those costs)

2/15/2007CS 3204 Spring 2007 22

Rules for Easy Locking
• Every shared variable must be protected by a

lock
– One lock may protect more than one variable, but not

too many
– Acquire lock before touching (reading or writing)

variable
– Release when done, on all paths

• If manipulating multiple variables, acquire locks
protecting each
– Acquire locks always in same order (doesn’t matter

which order, but must be same)
– Release in opposite order
– Don’t mix acquires & release (two-phase locking)

2/15/2007CS 3204 Spring 2007 23

Locks in Java/C#

• Every object can function as lock – no need to declare &
initialize them!

• synchronized (locked in C#) brackets code in
lock/unlock pairs – either entire method or block {}

• finally clause ensures unlock() is always called

synchronized void method() {

code;

synchronized (obj) {

more code;

}

even more code;

}

synchronized void method() {

code;

synchronized (obj) {

more code;

}

even more code;

}

void method() {
try {

lock(this);

code;
try {

lock(obj);
more code;

} finally { unlock(obj); }
even more code;

} finally { unlock(this); }
}

void method() {
try {

lock(this);

code;
try {

lock(obj);
more code;

} finally { unlock(obj); }
even more code;

} finally { unlock(this); }
}

is
transformed

to

2/15/2007CS 3204 Spring 2007 24

Subtle Race Condition

• Race condition even though individual accesses to “sb” are
synchronized (protected by a lock)
– But “len” may no longer be equal to “sb.length” in call to getChars()

• This means simply slapping lock()/unlock() around every access to a
shared variable does not thread-safe code make

• Found by Flanagan/Freund

public synchronized StringBuffer append(StringBuffer sb) {
int len = sb.length(); // note: StringBuffer.length() is synchronized
int newcount = count + len;
if (newcount > value.length)

expandCapacity(newcount);
sb.getChars(0, len, value, count); // StringBuffer.getChars() is synchronized
count = newcount;
return this;

}

public synchronized StringBuffer append(StringBuffer sb) {
int len = sb.length(); // note: StringBuffer.length() is synchronized
int newcount = count + len;
if (newcount > value.length)

expandCapacity(newcount);
sb.getChars(0, len, value, count); // StringBuffer.getChars() is synchronized
count = newcount;
return this;

}

Not holding lock on ‘sb’ – other
Thread may change its length

