CS 3204
Operating Systems

Lecture 9
Godmar Back

Virgini

mTec_h

Announcements

* Project 1 Feb 20 (Tuesday) 11:59pm
— Will announce additional office hours this
week
— Use forum, ask questions
 Project 0 graded, will be handed back
before Thursday lecture
— Read feedback before submitting project 1
» Reading:
— Read carefully 1.5, 3.1-3.3, 6.1-6.4

v“gmm‘a.r l CS 3204 Spring 2007 2/15/2007 2

Project 1 Suggested Timeline

« End of last week: Feb 2:

— Have read relevant project documentation, set up CVS, built and
run your first kernel, designed your data structures for alarm
clock

¢ Alarm clock by Feb 6

« Basic priority by Feb 8

« Priority Inheritance & Advanced Scheduler will take the
most time to implement & debug, start them in parallel

— Should have design for priority inheritance figured out by Feb 13

— Develop & test fixed-point layer independently by Feb 13

* Due date Feb 20

_vug] nia

mTed]

CS 3204 Spring 2007 2/15/2007 3

Concurrency & Synchronization

continued

_vug] nia

mTed]

Recap: Synchronization

« Disabling IRQs — use to protect against
concurrent access by IRQ handler

 Locks — use to protect against concurrent
access by other threads

« Direct implementation of locks on uniprocessor
— Requires disable_preemption
— Involves state change of thread if contended

« Today: multiprocessor locks, locking strategies

v“gmm‘a.r och CS 3204 Spring 2007 2/15/2007 5

Multiprocessor Locks

« Can't stop threads running on other processors

— too expensive (interprocessor irq)

— also would create conflict with protection (locking =
unprivileged op, stopping = privileged op), involving
the kernel in *every* acquire/release

* Instead: use atomic instructions provided by
hardware

— E.g.: test-and-set, atomic-swap, compare-and-
exchange, fetch-and-add

— All variations of “read-and-modify” theme

 Locks are built on top of these

v“gmm‘a.r och CS 3204 Spring 2007 2/15/2007 6

Atomic Swap Spinlocks
10 ©, & atirio SuED (IS mEEm wanlE e s lock_acquire(struct lock *) lock_release(struct lock *I)
"?id ' it 1 it int lockstate = LOCKED; I->state = UNLOCKED;
?"m'c—swap('” AL, [“mEmas2) while (lockstate == LOCKED) {
[disable interrupts in CPU; atomlc_swap(ilf :I;f;:;;’
lock memory bus for other processors] } !
int tmp = *memory1; }
*memoryl = *memory2;
*memory2 = tmp; H o H
[unlock memory bus; reenable interrupts] memory bus * Thread spins until it acquires lock
} — Q1: when should it block instead?
— Q2: what if spin lock holder is preempted?
V‘“gmﬁ.r ch CS 3204 Spring 2007 2/15/2007 7 V‘“gmﬁ.r ch CS 3204 Spring 2007 2/15/2007 8

Spinning vs Blocking

¢ Blocking has a cost

— Shouldn’t block if lock becomes available in
less time than it takes to block

 Strategy: spin for time it would take to
block

— Even in worst case, total cost for lock_acquire
is less than 2*block time

Vugmmta Toch CS 3204 Spring 2007 2/15/2007 9

Spinlocks vs Disabling Preemption

* What if spinlocks were used on single CPU? Consider:
— thread 1 takes spinlock
— thread 1 is preempted
— thread 2 with higher priority runs
— thread 2 tries to take spinlock, finds it taken
— thread 2 spins forever — deadlock!
« Thus in practice, usually combine spinlocks with
disabling preemption
— E.g., spin_lock_irgsave() in Linux
« UP kernel: reduces to disable_preemption
* SMP kernel: disable_preemption + spinlock
« Spinlocks are used when holding resources for small
peri)ods of time (same rule as for when it's ok to disable
irgs

V“Emmla.r wch CS 3204 Spring 2007 2/15/2007 10

Spinlocks (Faster)

lock_acquire(struct lock *I) lock_release(struct lock *I)
{
int lockstate = LOCKED;
while (lockstate == LOCKED) { }
while (I->state == LOCKED)
continue;
atomic_swap(&lockstate,
&l->state);
}

|->state = UNLOCKED;

}

« Only try “expensive” atomic_swap instruction if
you've seen lock in unlocked state

v“gmm‘a.r och CS 3204 Spring 2007 2/15/2007 1

Locks: Ownership & Recursion

» Locks typically (not always) have notion of
ownership
— Only lock holder is allowed to unlock
— See Pintos lock_held_by_current_thread()

» What if lock holder tries to acquire locks it
already holds?
— Nonrecursive locks: deadlock!

— Recursive locks:
* inc counter
« dec counter on lock_release
« release when zero

v“gmm‘a.r och CS 3204 Spring 2007 2/15/2007 12

Implementing Locks:
Practical Issues

* How expensive are locks?

* Two considerations:
— Cost to acquire uncontended lock
« UP Kernel: disable/enable irq + memory access

« In other scenarios: needs atomic instruction (relatively expensive in
terms of processor cycles, especially if executed often)

— Cost to acquire contended lock
« Spinlock: blocks current CPU entirely (if no blocking is employed)
« Regular lock: cost at least two context switches, plus associated
management overhead
» Conclusions
— Optimizing uncontended case is important
— “Hot locks” can sack performance easily

Virgini

W'I'ed]

CS 3204 Spring 2007 2/15/2007 13

- Note -

» Examples on following slides assume a slightly
different version of Project O (used last
semesters) where used blocks were also kept on
a list, the “used list.”

— mem_alloc would add a block to used list
— mem_free would remove block from used list

 In that case, the code needed to protect both the

free and used list

The following slides discuss correct and

incorrect way of doing so

Virgini

CS 3204 Spring 2007 2/15/2007 14

W'I'ed]

Using Locks

¢ Associate each shared variable with lock L
— “lock L protects that variable”

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock listlock; /* Protects usedlist & freelist */

void mem_free(block *b)

{

block *b; lock_acquire(&listlock);
lock_acquire(&listlock); list_remove(&b->elem);

b = alloc_block_from_freelist(); coalesce_into_freelist(&freelist, b);
insert_into_usedlist(&usedlist, b); lock_release(&listlock);
lock_release(&listlock); }

return b->data;

void *mem_alloc(...)

_vug] nia

W'I'ed]

CS 3204 Spring 2007 2/15/2007 15

How many locks should | use?

 Could use one lock for all shared variables
— Disadvantage: if a thread holding the lock blocks, no
other thread can access any shared variable, even
unrelated ones
— Sometimes used when retrofitting non-threaded code
into threaded framework
— Examples:
« “BKL" Big Kernel Lock in Linux
« fslock in Pintos Project 2
* |deally, want fine-grained locking

— One lock only protects one (or a small set of)
variables — how to pick that set?

_vug] nia

CS 3204 Spring 2007 2/15/2007 16

W'I'ed]

Multiple locks, the wrong way

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock alloclock; /* Protects allocations */
static struct lock freelock; /* Protects deallocations */

void *mem_alloc(...) void mem_free(block *b)
{ {
block *b; lock_acquire(&freelock);
lock_acquire(&alloclock); list_remove(&b->elem);
b = alloc_block_from_freelist(); coalesce_into_freelist(&freelist, b);
insert_into_usedlist(&usedlist, b); lock_release(&freelock);
lock_release(&alloclock); }
} e (BT Wrong: locks protect data structures, not
code blocks! Allocating thread & deallocating
thread could collide

Virgini

W'I'ed]

CS 3204 Spring 2007 2/15/2007 17

Multiple locks, 2" try

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

void *mem_alloc(...) void mem_free(block *b)

block *b; lock_acquire(&usedlock);
lock_acquire(&freelock); list_remove(&b->elem);

b = alloc_block_from_freelist(); lock_acquire(&freelock);
lock_acquire(&usedlock); coalesce_into_freelist(&freelist, b);
insert_into_usedlist(&usedlist, b); lock_release(&usedlock);
lock_release(&freelock); lock_release(&freelock);

lock_release(&usedlock); ['ajso wrong: deadlock!
return b->data; Always acquire multiple locks in same order -
3 Or don't hold them simultaneously
Virginia CS 3204 Spring 2007 2/15/2007 18

W'I'ed]

Multiple locks, correct (1)

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

void *mem_alloc(...) void mem_free(block *b)

{ {
block *b; lock_acquire(&usedlock);
lock_acquire(&usedlock); lock_acquire(&freelock);
lock_acquire(&freelock); list_remove(&b->elem);
b = alloc_block_from_freelist(); coalesce_into_freelist(&freelist, b);
insert_into_usedlist(&usedlist, b); lock_release(&freelock);
lock_release(&freelock); lock_release(&usedlock);
lock_release(&usedlock); [correct, but inefficient!

Multiple locks, correct (2)

static struct If COrrect, but not necessarily better!
static struct I On uniprocessor:
) No throughput from fine-grained locking, since no
static struct I{ plocking inside critical sections — but pay twice the price
static struct I4 compared to one-lock solution
el) On_multipror_:essor: _
= Gain from being able to manipulate free & used
{ block *b: lists in parallel, but increased risk of contended locks

lock_acquire(&freelock);

b = alloc_block_from_freelist();
lock_release(&freelock); list_remove(&b->elem);
lock_acquire(&usedlock); lock_release(&usedlock);
insert_into_usedlist(&usedlist, b); lock_acquire(&freelock);
lock_release(&usedlock); coalesce_into_freelist(&freelist, b);

lock_acquire(&usedlock);

* Choosing which lock should protect which
shared variable(s) is not easy — must weigh:

— Whether all variables are always accessed together
(use one lock if so)

— Whether code inside critical section can block (if not,
no throughput gain from fine-grained locking on
uniprocessor)

— Whether there is a consistency requirement if multiple
variables are accessed in related sequence (must
hold single lock if so)

« See “Subtle race condition in Java” below

— Cost of multiple calls to lock/unlock (increasing

parallelism advantages may be offset by those costs)

V“Emmla.red] CS 3204 Spring 2007 2/15/2007 21

return b->data; Locks are always held simultaneously, return b->data; lock_release(&freelock);
X one lock would suffice 3
v“gjnﬁm CS 3204 Spring 2007 2/15/2007 19 v“gjnﬁm CS 3204 Spring 2007 2/15/2007 20
Conclusion Rules for Easy Locking

» Every shared variable must be protected by a
lock

— One lock may protect more than one variable, but not
too many

— Acquire lock before touching (reading or writing)
variable

— Release when done, on all paths
+ If manipulating multiple variables, acquire locks
protecting each

— Acquire locks always in same order (doesn’t matter
which order, but must be same)

— Release in opposite order
— Don’t mix acquires & release (two-phase locking)

V“Emmla.red] CS 3204 Spring 2007 2/15/2007 22

Locks in Java/C#

void method() {
i i try {
h h
synchronized void method() { lock(this):
code;
code;
synchronized (obj) { try {
more code; ez @Dy
! is more code;
} transformed } finally { unlock(obj); }
. to even more code;
e (T G } finally { unlock(this); }
}

« Every object can function as lock — no need to declare &
initialize them!

= synchronized (locked in C#) brackets code in
lock/unlock pairs — either entire method or block {}

« finally clause ensures unlock() is always called
V“Emmla.red] CS 3204 Spring 2007 2/15/2007 23

Subtle Race Condition

public synchronized StringBuffer append(StringBuffer sb) {
int len = sb.length(); // note: StringBuffer.length() is synchronized
int newcount = count + len; .
if (newcount > value.length) Not holding lock on ‘s.b’ — other

expandCapacity(newcount); | Thread may change its length

sh.getChars(0, len, value, count); // StringBuffer.getChars() is synchronized
count = newcount;
return this;

« Race condition even though individual accesses to “sh” are
synchronized (protected by a lock)

— But “len” may no longer be equal to “sb.length” in call to getChars()

« This means simply slapping lock()/unlock() around every access to a
shared variable does not thread-safe code make

« Found by Flanagan/Freund

V“Emmla.red] CS 3204 Spring 2007 2/15/2007 24

