
1

CS 3204
Operating Systems

Godmar Back

Lecture 8

2/13/2007CS 3204 Spring 2007 2

Announcements

• Project 1 Feb 20 (Tuesday) 11:59pm

• Monday Feb 12, 4:30-7:30 CS Career Fair
in Torgersen Museum
– Bring your resume

• Reading:
– Read carefully 1.5, 3.1-3.3, 6.1-6.4

2/13/2007CS 3204 Spring 2007 3

Project 1 Suggested Timeline
• End of last week: Feb 2:

– Have read relevant project documentation, set up CVS, built and
run your first kernel, designed your data structures for alarm
clock

• Alarm clock by Feb 6
• Basic priority by Feb 8
• Priority Inheritance & Advanced Scheduler will take the

most time to implement & debug, start them in parallel
– Should have design for priority inheritance figured out by Feb 13
– Develop & test fixed-point layer independently by Feb 13

• Due date Feb 20

Concurrency & Synchronization

2/13/2007CS 3204 Spring 2007 5

Disabling Interrupts

• All asynchronous
context switches start
with interrupts
– So disable interrupts

to avoid them!

intr_level old = intr_disable();
/* modify shared data */
intr_set_level(old);

intr_level old = intr_disable();
/* modify shared data */
intr_set_level(old);

void intr_set_level(intr_level to)
{

if (to == INTR_ON)
intr_enable();

else
intr_disable();

}

void intr_set_level(intr_level to)
{

if (to == INTR_ON)
intr_enable();

else
intr_disable();

}

2/13/2007CS 3204 Spring 2007 6

Disabling Interrupts: Summary
• (this applies to all variations)
• Sledgehammer solution
• Infinite loop means machine locks up
• Use this to protect data structures from concurrent

access by interrupt handlers
– Keep sections of code where irqs are disabled minimal (nothing

else can happen until irqs are reenabled – latency penalty!)
– If you block (give up CPU) mutual exclusion with other threads is

not guaranteed
• Any function that transitively calls thread_block() may block

• Want something more fine-grained
– Key insight: don’t exclude everybody else, only those contending

for the same critical section

2

2/13/2007CS 3204 Spring 2007 7

Critical Section Problem
• A solution for the CS Problem must

1) Provide mutual exclusion: at most one thread can be inside CS
2) Guarantee Progress: (no deadlock)

• if more than one threads attempt to enter, one will succeed
• ability to enter should not depend on activity of other threads not

currently in CS
3) Bounded Waiting: (no starvation)

• A thread attempting to enter critical section eventually will
(assuming no thread spends unbounded amount of time inside
CS)

• A solution for CS problem should be
– Fair (make sure waiting times are balanced)
– Efficient (not waste resources)
– Simple

2/13/2007CS 3204 Spring 2007 8

Locks
• Thread that enters CS locks it

– Others can’t get in and have to wait

• Thread unlocks CS when leaving it
– Lets in next thread
– which one?

• FIFO guarantees bounded waiting
• Highest priority in Proj1

• Can view Lock as an abstract data
type
– Provides (at least) init, acquire, release

lock

unlock

2/13/2007CS 3204 Spring 2007 9

Implementing Locks

• Locks can be implemented directly, or –
among other options - on top of
semaphores
– If implemented on top of semaphores, then

semaphores must be implemented directly
– Will explain this layered approach first to help

in understanding project code
– Issues in direct implementation of locks apply

to direct implementation of semaphores as
well

2/13/2007CS 3204 Spring 2007 10

Semaphores
• Invented by Edsger Dijkstra in 1960s
• Counter S, initialized to some value, with two operations:

– P(S) or “down” or “wait” – if counter greater than zero,
decrement. Else wait until greater than zero, then decrement

– V(S) or “up” or “signal” – increment counter, wake up any
threads stuck in P.

• Semaphores don’t go negative:
– #V + InitialValue - #P >= 0

• Note: direct access to counter value after initialization is
not allowed

• Counting vs Binary Semaphores
– Binary: counter can only be 0 or 1

• Simple to implement, yet powerful
– Can be used for many synchronization problems

Source: inter.scoutnet.org

2/13/2007CS 3204 Spring 2007 11

Semaphores as Locks
• Semaphores can be

used to build locks
– Pintos does just that

• Must initialize
semaphore with 1 to
allow one thread to
enter critical section

• Easily generalized to allow at most N simultaneous
threads: multiplex pattern (i.e., a resource can be
accessed by at most N threads)

semaphore S(1); // allows initial down

lock_acquire()
{ // try to decrement, wait if 0

sema_down(S);
}

lock_release()
{ // increment (wake up waiters if any)

sema_up(S);
}

semaphore S(1); // allows initial down

lock_acquire()
{ // try to decrement, wait if 0

sema_down(S);
}

lock_release()
{ // increment (wake up waiters if any)

sema_up(S);
}

2/13/2007CS 3204 Spring 2007 12

Implementing Locks Directly

• NB: Same technique applies to implementing
semaphores directly (as in done in Pintos)
– Will see two applications of the same technique

• Different solutions exist to implement locks for
uniprocessor and multiprocessors

• Will talk about how to implement locks for
uniprocessors first – next slides all assume
uniprocessor

3

2/13/2007CS 3204 Spring 2007 13

Implementing Locks, Take 1

• Does this work?

lock_acquire(struct lock *l)
{

while (l->state == LOCKED)
continue;

l->state = LOCKED;
}

lock_acquire(struct lock *l)
{

while (l->state == LOCKED)
continue;

l->state = LOCKED;
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

No – does not guarantee mutual exclusion property – more than one
thread may see “state” in UNLOCKED state and break out of while
loop. This implementation has itself a race condition.

2/13/2007CS 3204 Spring 2007 14

Implementing Locks, Take 2

• Does this work?

lock_acquire(struct lock *l)
{

disable_preemption();
while (l->state == LOCKED)

continue;
l->state = LOCKED;
enable_preemption();

}

lock_acquire(struct lock *l)
{

disable_preemption();
while (l->state == LOCKED)

continue;
l->state = LOCKED;
enable_preemption();

}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

No – does not guarantee progress property. If one thread enters the
while loop, no other thread will ever be scheduled since preemption
is disabled – in particular, no thread that would call lock_release will
ever be scheduled.

2/13/2007CS 3204 Spring 2007 15

Implementing Locks, Take 3

• Does this work?

lock_acquire(struct lock *l)
{

while (true) {
disable_preemption();
if (l->state == UNLOCKED) {

l->state = LOCKED;
enable_preemption();
return;

}
enable_preemption();

}
}

lock_acquire(struct lock *l)
{

while (true) {
disable_preemption();
if (l->state == UNLOCKED) {

l->state = LOCKED;
enable_preemption();
return;

}
enable_preemption();

}
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

Yes, this works – but is grossly
inefficient. A thread that
encounters
the lock in the LOCKED state
will busy wait until it is
unlocked,
needlessly using up CPU time.

2/13/2007CS 3204 Spring 2007 16

Implementing Locks, Take 4
lock_acquire(struct lock *l)
{

disable_preemption();
while (l->state == LOCKED) {

list_push_back(l->waiters,
¤t->elem);

thread_block(current);
}
l->state = LOCKED;
enable_preemption();

}

lock_acquire(struct lock *l)
{

disable_preemption();
while (l->state == LOCKED) {

list_push_back(l->waiters,
¤t->elem);

thread_block(current);
}
l->state = LOCKED;
enable_preemption();

}

lock_release(struct lock *l)
{

disable_preemption();
l->state = UNLOCKED;
if (list_size(l->waiters) > 0)

thread_unblock(
list_entry(list_pop_front(l->waiters),

struct thread, elem));
enable_preemption();

}

lock_release(struct lock *l)
{

disable_preemption();
l->state = UNLOCKED;
if (list_size(l->waiters) > 0)

thread_unblock(
list_entry(list_pop_front(l->waiters),

struct thread, elem));
enable_preemption();

}

Correct & uses proper blocking.
Note that thread doing the unlock performs the work of unblocking
the first waiting thread.

