
1

CS 3204
Operating Systems

Godmar Back

Lecture 6

2/6/2007CS 3204 Spring 2007 2

Announcements

• Project 1 Feb 20 (Tuesday) 11:59pm
• You should have formed groups by now

– Please send me email telling me what group 
you’re in.

– If you haven’t formed a group yet, do so asap
and don’t wait to start with the project – can 
get set up and do alarm clock by yourself.

• Reading: 
– Read carefully 1.5, 3.1-3.3, 6.1-6.4

2/6/2007CS 3204 Spring 2007 3

Project 1 Suggested Timeline
• End of this week: Feb 2:

– Have read relevant project documentation, set up CVS, built and 
run your first kernel, designed your data structures for alarm 
clock

• Alarm clock by Feb 6
• Basic priority by Feb 8
• Priority Inheritance & Advanced Scheduler will take the 

most time to implement & debug, start them in parallel
– Should have design for priority inheritance figured out by Feb 13
– Develop & test fixed-point layer independently by Feb 13

• Due date Feb 20

2/6/2007CS 3204 Spring 2007 4

Type-safe arithmetic types in C
typedef struct
{
double      re;
double      im;

} complex_t;

static inline complex_t
complex_add(complex_t x, complex_t y)
{
return (complex_t){ x.re + y.re, x.im + y.im };

}

typedef struct
{
double      re;
double      im;

} complex_t;

static inline complex_t
complex_add(complex_t x, complex_t y)
{
return (complex_t){ x.re + y.re, x.im + y.im };

}

static inline double
complex_real(complex_t x)
{
return x.re;

}

static inline double
complex_imaginary(complex_t x)
{
return x.im;

}

static inline double
complex_abs(complex_t x)
{
return sqrt(x.re * x.re + x.im * x.im);

}

static inline double
complex_real(complex_t x)
{
return x.re;

}

static inline double
complex_imaginary(complex_t x)
{
return x.im;

}

static inline double
complex_abs(complex_t x)
{
return sqrt(x.re * x.re + x.im * x.im);

}

Pitfall: typedef int fixed_point_t;
fixed_point_t x;
int y;
x = y; // no compile error

Processes & Threads

Continued

2/6/2007CS 3204 Spring 2007 6

Overview

• Have discussed:
– User vs Kernel Mode
– Context Switching
– Process States
– Priority Scheduling

• Process/Thread API Examples
– Fork/join model



2

2/6/2007CS 3204 Spring 2007 7

Process States

• Only 1 process (per CPU) can be in RUNNING state

RUNNINGRUNNING

READYREADYBLOCKEDBLOCKED

Process
must wait
for event

Event arrived

Scheduler
picks process

Process
preempted

2/6/2007CS 3204 Spring 2007 8

Using thread_yield() to implement 
preemption

• Current thread (“RUNNING”) is moved to 
READY state, added to READY list.

• Then scheduler is invoked. Picks a new 
READY thread from READY list.

• Case a): there’s only 1 READY thread. 
Thread is rescheduled right away

• Case b): there are other READY thread(s)
– b.1) another thread has higher priority – it is 

scheduled
– b.2) another thread has same priority – it is 

scheduled provided the previously running 
thread was inserted in tail of ready list.

• “thread_yield()” is a call you can use 
whenever you identify a need to preempt 
current thread.

• Exception: inside an interrupt handler, use 
“intr_yield_on_return()” instead

RUNNINGRUNNING

READYREADYBLOCKEDBLOCKED

Process
must wait
for event

Event 
arrived

Scheduler
picks 
process

Process
preempted

2/6/2007CS 3204 Spring 2007 9

Reasons for Preemption

• Generally two: quantum expired or change 
in priorities

• Reason #1:
– A process of higher importance than the one 

that’s currently running has just become ready
• Reason #2:

– Time Slice (or Quantum) expired
• Question: what’s good about long vs. short 

time slices?
2/6/2007CS 3204 Spring 2007 10

I/O Bound vs CPU Bound Procs

• Processes that usually exhaust their 
quanta are said to be CPU bound

• Processes that frequently block for I/O are 
said to be I/O bound

• Q.: what are examples of each?

• What policy should a scheduler use to 
juggle the needs of both?

2/6/2007CS 3204 Spring 2007 11

Process States w/ Suspend

• Can be useful sometimes to suspend processes
– By user request: ^Z in Linux shell/job control
– By OS decision: swapping out entire processes 

(Solaris & Windows do that, Linux doesn’t)
2/6/2007CS 3204 Spring 2007 12

Windows XP
• Thread state diagram 

in a industrial kernel

• Source: Dave 
Probert, Windows 
Internals – Copyright 
Microsoft 2003



3

2/6/2007CS 3204 Spring 2007 13

Windows XP
• Priority scheduler 

uses 32 priorities
• Scheduling class 

determines range in 
which priority are 
adjusted

• Source: Microsoft®
Windows® Internals, 
Fourth Edition: 
Microsoft Windows 
Server™

2/6/2007CS 3204 Spring 2007 14

Process Creation

• Two common paradigms:
– Cloning vs. spawning

• Cloning: (Unix)
– “fork()” clones current process
– child process then loads new program

• Spawning: (Windows, Pintos)
– “exec()” spawns a new process with new program

• Difference is whether creation of new process 
also involves a change in program

2/6/2007CS 3204 Spring 2007 15

fork() #include <sys/types.h>
#include <unistd.h>
#include <stdio.h>

int main(int ac, char *av[]) 
{

pid_t child = fork();
if (child < 0)

perror(“fork”), exit(-1);
if (child != 0) {

printf ("I'm the parent %d, my child is  %d\n", 
getpid(), child);

wait(NULL); /* wait for child (“join”) */
} else {

printf ("I'm the child  %d, my parent is %d\n", 
getpid(), getppid());

execl("/bin/echo", "echo", "Hello, World", NULL);
}

}

#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>

int main(int ac, char *av[]) 
{

pid_t child = fork();
if (child < 0)

perror(“fork”), exit(-1);
if (child != 0) {

printf ("I'm the parent %d, my child is  %d\n", 
getpid(), child);

wait(NULL); /* wait for child (“join”) */
} else {

printf ("I'm the child  %d, my parent is %d\n", 
getpid(), getppid());

execl("/bin/echo", "echo", "Hello, World", NULL);
}

}

2/6/2007CS 3204 Spring 2007 16

Fork/Exec Model
• Fork():

– Clone most state of parent, including memory
– Inherit some state, e.g. file descriptors
– Important optimization: copy-on-write 

• Some state is copied lazily
– Keeps program, changes process

• Exec():
– Overlays current process with new executable
– Keeps process, changes program

• Advantage: simple, clean
• Disadvantage: does not optimize common case (fork 

followed by exec of child)

2/6/2007CS 3204 Spring 2007 17

The fork()/join() paradigm
• After fork(), parent & child 

execute in parallel
• Purpose:

– Launch activity that can be done in 
parallel & wait for its completion

– Or simply: launch another program 
and wait for its completion (shell 
does that)

• Pintos:
– Kernel threads: thread_create (no 

thread_join)
– exec(), you’ll do wait() in Project 2

Parent:
fork()

Parent:
fork()

Parent:
join()

Parent:
join()

Parent
process
executes

Parent
process
executes

Child
process 
executes

Child
process 
executes

Child
process 

exits

Child
process 

exits

OS notifies

2/6/2007CS 3204 Spring 2007 18

CreateProcess()
// Win32
BOOL CreateProcess(

LPCTSTR lpApplicationName, 
LPTSTR lpCommandLine, 
LPSECURITY_ATTRIBUTES lpProcessAttributes, 
LPSECURITY_ATTRIBUTES lpThreadAttributes, 
BOOL bInheritHandles, 
DWORD dwCreationFlags, 
LPVOID lpEnvironment, 
LPCTSTR lpCurrentDirectory, 
LPSTARTUPINFO lpStartupInfo, 
LPPROCESS_INFORMATION lpProcessInformation );

• See also system(3) on Unix systems
• Pintos exec() is CreateProcess(), not like Unix’s exec()



4

2/6/2007CS 3204 Spring 2007 19

Thread Creation APIs
• How are threads embedded in a language?
• POSIX Threads Standard (in C)

– pthread_create(), pthread_join()
– Uses function pointer

• Java/C#
– Thread.start(), Thread.join()
– Java: Using “Runnable” instance
– C#: Uses “ThreadStart” delegate

• C++
– No standard has emerged as of yet
– see ISO C++ Strategic Plan for Multithreading

2/6/2007CS 3204 Spring 2007 20

Example pthread_create/join
static void * test_single(void *arg)
{

// this function is executed by each thread, in parallel
}

/* Test the memory allocator with NTHREADS concurrent threads. */
pthread_t threads[NTHREADS];
int i;
for (i = 0; i < NTHREADS; i++)
if (pthread_create(threads + i, (const pthread_attr_t*)NULL, 

test_single, (void*)i) == -1)
{ printf("error creating pthread\n"); exit(-1); }

/* Wait for threads to finish. */
for (i = 0; i < NTHREADS; i++)
pthread_join(threads[i], NULL);

Use Default Attributes –
could set stack 
addr/size here

2nd arg could receive 
exit status of thread

2/6/2007CS 3204 Spring 2007 21

Java Threads Example
public class JavaThreads {

public static void main(String []av) throws Exception {
Thread [] t = new Thread[5];
for (int i = 0; i < t.length; i++) {

final int tnum = i;
Runnable runnable = new Runnable() {

public void run() {
System.out.println("Thread #"+tnum);

}
};
t[i] = new Thread(runnable);
t[i].start();

}
for (int i = 0; i < t.length; i++)

t[i].join();
System.out.println("all done");

}
}

Threads implements Runnable
– could have subclassed
Thread & overridden run()

Thread.join() can throw 
InterruptedException – can be 

used to interrupt thread waiting to 
join via Thread.interrupt

2/6/2007CS 3204 Spring 2007 22

Why is taking C++ so long?
• Java didn’t – and got it wrong. 

– Took years to fix
• What’s the problem?

– Compiler must know about concurrency to not reorder 
operations past implicit synchronization points

– See also Pintos Reference Guide A.3.5 Memory Barriers
– See Boehm [PLDI 2005]: Threads cannot be implemented as a 

library

lock (&l);
flag = true;
unlock (&l);

lock (&l);
unlock (&l); 
flag = true;


