
1

CS 3204
Operating Systems

Godmar Back

Lecture 4

1/30/2007CS 3204 Spring 2007 2

Announcements

• Project 0 Jan 29 (Monday) 11:59pm
• Additional office hours this week – check

forum for hours
• Start forming groups

– (but don’t collaborate on project 0!)
• Project 1 help sessions next week

(probably Tu+We evening)

1/30/2007CS 3204 Spring 2007 3

Project 0
• Implement User-level Memory Allocator

– Use address-ordered first-fit

used blockfree blockfree list

start enduser object user object

Processes & Threads

1/30/2007CS 3204 Spring 2007 5

Threads vs Processes
• Thread:

– Execution sequence + CPU state (registers + stack)
• Process:

– n Threads + Resources shared by them (specifically:
accessible heap memory, global variables, file
descriptors, etc.)

• In most contemporary OS, n >= 1.
• In Pintos, n=1: a process is a thread – as in

traditional Unix.
– Following discussion applies to both threads &

processes.
1/30/2007CS 3204 Spring 2007 6

Context Switching

Process 1

Process 2

Kernel

user mode

kernel mode

Timer interrupt: P1 is preempted,
context switch to P2

Timer interrupt: P1 is preempted,
context switch to P2

System call: (trap):
P2 starts I/O operation, blocks
context switch to process 1

System call: (trap):
P2 starts I/O operation, blocks
context switch to process 1

I/O device interrupt:
P2’s I/O complete
switch back to P2

I/O device interrupt:
P2’s I/O complete
switch back to P2

Timer interrupt: P2 still has
time left, no context switch

Timer interrupt: P2 still has
time left, no context switch

2

1/30/2007CS 3204 Spring 2007 7

Mode Switching
• User → Kernel mode

– For reasons external or internal to CPU
• External (aka hardware) interrupt:

– timer/clock chip, I/O device, network card, keyboard, mouse
– asynchronous (with respect to the executing program)

• Internal interrupt (aka software interrupt, trap, or
exception)
– are synchronous
– can be intended: for system call (process wants to enter kernel

to obtain services)
– or unintended (usually): fault/exception (division by zero, attempt

to execute privileged instruction in user mode)
• Kernel → User mode switch on iret instruction

1/30/2007CS 3204 Spring 2007 8

Context vs Mode Switching
• Mode switch guarantees kernel gains control

when needed
– To react to external events
– To handle error situations
– Entry into kernel is controlled

• Not all mode switches lead to context switches
– Kernel code’s logic decides when – subject of

scheduling
• Mode switch always hardware supported

– Context switch (typically) not – this means many
options for implementing it!

1/30/2007CS 3204 Spring 2007 9

Implementing Processes

• To maintain illusion, must remember a process’s
information when not currently running

• Process Control Block (PCB)
– Identifier (*)
– Value of registers, including stack pointer (*)
– Information needed by scheduler: process state

(whether blocked or not) (*)
– Resources held by process: file descriptors, memory

pages, etc.
(*) applies to TCB (thread control block) as well

1/30/2007CS 3204 Spring 2007 10

PCB vs TCB

• In 1:1 systems (Pintos), TCB==PCB
– struct thread

– add information there as projects progress
• In 1:n systems:

– TCB contains execution state of thread +
scheduling information + link to PCB for
process to which thread belongs

– PCB contains identifier, plus information
about resources shared by all threads

struct thread
{
tid_t tid; /* Thread identifier. */
enum thread_status status; /* Thread state. */
char name[16]; /* Name. */
uint8_t *stack; /* Saved stack pointer. */
int priority; /* Priority. */
struct list_elem elem; /* List element. */
/* others you’ll add as needed. */

};

1/30/2007CS 3204 Spring 2007 11

Steps in context switch: high-level

• Save the current process’s execution state
to its PCB

• Update current’s PCB as needed
• Choose next process N
• Update N’s PCB as needed
• Restore N’s PCB execution state

– May involve reprogramming MMU

1/30/2007CS 3204 Spring 2007 12

Execution State

• Saving/restoring execution state is highly tricky:
– Must save state without destroying it

• Registers
– On x86: eax, ebx, ecx, …

• Stack
– Special area in memory that holds activation records:

e.g., the local (automatic) variables of all function
calls currently in progress

– Saving the stack means retaining that area & saving a
pointer to it (“stack pointer” = esp)

3

1/30/2007CS 3204 Spring 2007 13

The Stack, seen from C/C++

• Q.: which of these variables are stored on
the stack, and which are not?

void func(int d)
{
static int e;
int f;
struct S w;
int *g = new int[10];

}

int a;
static int b;
int c = 5;
struct S

{
int t;

} s;

A.: On stack: d, f, w (including w.t), g
Not on stack: a, b, c, s (including s.t), e, g[0]…g[9]
A.: On stack: d, f, w (including w.t), g
Not on stack: a, b, c, s (including s.t), e, g[0]…g[9]

1/30/2007CS 3204 Spring 2007 14

Switching Procedures

• Inside kernel, context switch is implemented in
some procedure (function) called from C code
– Appears to caller as a procedure call

• Must understand how to switch procedures
(call/return)

• Procedure calling conventions
– Architecture-specific
– Defined by ABI (application binary interface),

implemented by compiler
– Pintos uses SVR4 ABI

1/30/2007CS 3204 Spring 2007 15

x86 Calling Conventions
• Caller saves caller-saved

registers as needed
• Caller pushes arguments,

right-to-left on stack via push
assembly instruction

• Caller executes CALL
instruction: save address of
next instruction & jump to
callee

• Caller resumes: pop
arguments off the stack

• Caller restores caller-saved
registers, if any

• Callee executes:
– Saves callee-saved

registers if they’ll be
destroyed

– Puts return value (if any) in
eax

• Callee returns: pop return
address from stack & jump to it

1/30/2007CS 3204 Spring 2007 16

Example
int globalvar;

int
callee(int a, int b)
{

return a + b;
}

int
caller(void)
{

return callee(5, globalvar);
}

callee:
pushl %ebp
movl %esp, %ebp
movl 12(%ebp), %eax
addl 8(%ebp), %eax
leave
ret

caller:
pushl %ebp
movl %esp, %ebp
pushl globalvar
pushl $5
call callee
popl %edx
popl %ecx
leave
ret

1/30/2007CS 3204 Spring 2007 17

Pintos Context Switch (1)

• threads/thread.c, threads/switch.S

static void
schedule (void)
{
struct thread *cur = running_thread ();
struct thread *next = next_thread_to_run ();
struct thread *prev = NULL;
if (cur != next)
prev = switch_threads (cur, next);

retlabel: /* not in actual code */
schedule_tail (prev);

}

uint32_t thread_stack_ofs = offsetof (struct thread, stack);

Stack
…

next
cur

&retlabelesp

1/30/2007CS 3204 Spring 2007 18

Pintos Context Switch (2)
switch_threads:

Save caller's register state.
Note that the SVR4 ABI allows us to destroy %eax, %ecx, %edx,
but requires us to preserve %ebx, %ebp, %esi, %edi.
pushl %ebx; pushl %ebp; pushl %esi; pushl %edi

Get offsetof (struct thread, stack).
mov thread_stack_ofs, %edx

Save current stack pointer to old thread's stack.
movl SWITCH_CUR(%esp), %eax
movl %esp, (%eax,%edx,1)

Restore stack pointer from new thread's stack.
movl SWITCH_NEXT(%esp), %ecx
movl (%ecx,%edx,1), %esp

Restore caller's register state.
popl %edi; popl %esi; popl %ebp; popl %ebx
ret

Stack
…

next
cur

&retlabelesp

Stack
…

next
cur

&retlabel
ebx
ebp
esi
ediesp

#define SWITCH_CUR 20
#define SWITCH_NEXT 24

#define SWITCH_CUR 20
#define SWITCH_NEXT 24

cur->stack = esp

esp = next->stack

// switch_thread (struct thread *cur, struct thread *next)

4

1/30/2007CS 3204 Spring 2007 19

Famous
Quote For
The Day

• Source: Dennis Ritchie, Unix V6 slp.c (context-
switching code) as per The Unix Heritage
Society (tuhs.org); gif by Eddie Koehler.

If the new process paused because it was swapped out,
set the stack level to the last call to savu(u_ssav). This
means that the return which is executed immediately
after the call to aretu actually returns from the last
routine which did the savu.

You are not expected to understand this.

1/30/2007CS 3204 Spring 2007 20

Pintos Context Switch (3)
• All state is stored on outgoing thread’s stack, and

restored from incoming thread’s stack
– Each thread has a 4KB page for its stack
– Called “kernel stack” because it’s only used when thread

executes in kernel mode
– Mode switch automatically switches to kernel stack

• x86 does this in hardware, curiously.
• switch_threads assumes that the thread that’s switched

in was suspended in switch_threads as well.
– Must fake that environment when switching to a thread for the

first time.
• Aside: none of the thread switching code uses privileged

instructions:
– that’s what makes user-level threads (ULT) possible

1/30/2007CS 3204 Spring 2007 21

Pintos Kernel Stack
4 kB +---------------------------------+

| kernel stack |
| | |
| | |
| V |
| grows downward |
| ... |
| ... |
| switch_threads’s |
| stack frame <---+ |
+----------------------+----------+	
magic	
:	
stack---+	
name	
status	

0 kB +---------------------------------+

• One page of
memory captures
a process’s kernel
stack + PCB

• Don’t allocate
large objects on
the stack:
void
kernel_function(void)
{

char buf[4096]; // DON’T
// KERNEL STACK OVERFLOW
// guaranteed

}

1/30/2007CS 3204 Spring 2007 22

External Interrupts & Context Switches
intr_entry:

/* Save caller's registers. */
pushl %ds; pushl %es; pushl %fs; pushl %gs; pushal

/* Set up kernel environment. */
cld
mov $SEL_KDSEG, %eax /* Initialize segment registers. */
mov %eax, %ds; mov %eax, %es
leal 56(%esp), %ebp /* Set up frame pointer. */

pushl %esp
call intr_handler /* Call interrupt handler. Context switch happens in there*/
addl $4, %esp
/* FALL THROUGH */

intr_exit: /* Separate entry for initial user program start */
/* Restore caller's registers. */
popal; popl %gs; popl %fs; popl %es; popl %ds
iret /* Return to current process, or to new process after context switch. */

1/30/2007CS 3204 Spring 2007 23

Context Switching: Summary

• Context switch means to save the current and
restore next process’s execution context

• Context Switch != Mode Switch
– Although mode switch often precedes context switch

• Asynchronous context switch happens in
interrupt handler
– Usually last thing before leaving handler

• Have ignored so far when to context switch &
why → next

