
1

CS 3204
Operating Systems

Godmar Back

Lecture 3

1/23/2007CS 3204 Spring 2007 2

Announcements

• Project 0 Jan 29 (Monday) 11:59pm
• Last prerequisite forms due now
• Additional office hours this week – check

forum for announcement later today
• Start forming groups

– (but don’t collaborate on project 0!)
• Project 1 help sessions next week

(probably Tu+We evening)

1/23/2007CS 3204 Spring 2007 3

Project 0
• Implement User-level Memory Allocator

– Use address-ordered first-fit

used blockfree blockfree list

start enduser object user object

1/23/2007CS 3204 Spring 2007 4

Summary: Core OS Functions

• Hardware abstraction through interfaces
• Protection:

– Preemption
– Interposition
– Privilege (user/kernel mode)

• Resource Management
– Virtualizing of resources
– Scheduling of resources

1/23/2007CS 3204 Spring 2007 5

Evolution of OS (III)
• Recent (last 15 years or so) trends
• Multiprocessing

– SMP: symmetric multiprocessors
– OS now must manage multiple CPUs with equal

access to shared memory
• Network Operating Systems

– Most current OS are NOS.
– Users are using systems that span multiple machines;

OS must provide services necessary to achieve that
• Distributed Operating Systems

– Multiple machines appear to user as single image.
– Maybe future? Difficult to do.

1/23/2007CS 3204 Spring 2007 6

OS and Performance
• Time spent inside OS code is wasted, from

user’s point of view
– In particular, applications don’t like it if OS does B in

addition to A when they’re asking for A, only
– Must minimize time spend in OS – how?

• Provide minimal abstractions
• Efficient data structures & algorithms

– Example: O(1) schedulers
• Exploit application behavior

– Caching, Replacement, Prefetching

2

1/23/2007CS 3204 Spring 2007 7

Common Performance Tricks
• Caching

– Pareto-Principle: 80% of time spent in 20% of the
code; 20% of memory accessed 80% of the time.

– Keep close what you predict you’ll need
– Requires replacement policy to get rid of stuff you

don’t
• Use information from past to predict future

– Decide what to evict from cache: monitor uses, use
least-recently-used policies (or better)

• Prefetch: Think ahead/speculate:
– Application asks for A now, will it ask for A+1 next?

1/23/2007CS 3204 Spring 2007 8

Final thought: OS aren’t perfect
• Still way too easy to crash an OS
• Example 1: “fork bomb”

– main() { for(;;) fork(); } stills brings down most Unixes
• Example 2: livelock

– Can be result of denial-of-service attack
– OS spends 100% of time servicing (bogus) network requests
– What if your Internet-enabled thermostat spends so much time

servicing ethernet/http requests that it has no cycles left to
control the HVAC unit?

• Example 3: buffer overflows
– Either inside OS, or in critical system components – read most

recent Microsoft bulletin.

1/23/2007CS 3204 Spring 2007 9

Things to get out of this class
• (Hopefully) deep understanding of OS
• Understanding of how OS interacts with

hardware
• Understanding of how OS kernel interacts with

applications
• Kernel Programming Experience

– Applies to Linux, Windows, Mac OS-X
– Debugging skills

• Experience with concurrent programming
– Useful in many other contexts (Java, C#, …)

Intermezzo

Just enough on concurrency to
get through Project 0

A lot more later.

1/23/2007CS 3204 Spring 2007 11

Concurrency

• Access to shared resources must be mediated
– Specifically shared (non-stack) variables

• Will hear a lot more about this
• For now, simplest way to protection is mutual

exclusion via locks (aka mutexes)
• For Project 0, concurrency is produced by using

PThreads (POSIX Threads), so must use
PThread’s mutexes.
– Just an API, idea is the same everywhere

1/23/2007CS 3204 Spring 2007 12

pthread_mutex example
/* Define a mutex and initialize it. */
static pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

static int counter = 0; /* A global variable to protect. */

/* Function executed by each thread. */
static void *
increment(void *_)
{

int i;
for (i = 0; i < 1000000; i++) {

pthread_mutex_lock(&lock);
counter++;
pthread_mutex_unlock(&lock);

}
}

3

Processes & Threads

1/23/2007CS 3204 Spring 2007 14

Overview

• Definitions
• How does OS execute processes?

– How do kernel & processes interact
– How does kernel switch between processes
– How do interrupts fit in

• What’s the difference between
threads/processes

• Process States
• Priority Scheduling

1/23/2007CS 3204 Spring 2007 15

Process

• These are all possible definitions:
– A program in execution
– An instance of a program running on a computer
– Schedulable entity (*)
– Unit of resource ownership
– Unit of protection
– Execution sequence (*) + current state (*) + set of

resources

(*) can be said of threads as well
1/23/2007CS 3204 Spring 2007 16

Alternative definition
• Thread:

– Execution sequence + CPU state (registers + stack)
• Process:

– n Threads + Resources shared by them (specifically:
accessible heap memory, global variables, file
descriptors, etc.)

• In most contemporary OS, n >= 1.
• In Pintos, n=1: a process is a thread – as in

traditional Unix.
– Following discussion applies to both threads &

processes.

1/23/2007CS 3204 Spring 2007 17

Context Switching
• Multiprogramming: switch to another process if

current process is (momentarily) blocked
• Time-sharing: switch to another process

periodically to make sure all process make equal
progress
– this switch is called a context switch.

• Must understand how it works
– how it interacts with user/kernel mode switching
– how it maintains the illusion of each process having

the CPU to itself (process must not notice being
switched in and out!)

1/23/2007CS 3204 Spring 2007 18

Context Switching

Process 1

Process 2

Kernel

user mode

kernel mode

Timer interrupt: P1 is preempted,
context switch to P2

Timer interrupt: P1 is preempted,
context switch to P2

System call: (trap):
P2 starts I/O operation, blocks
context switch to process 1

System call: (trap):
P2 starts I/O operation, blocks
context switch to process 1

I/O device interrupt:
P2’s I/O complete
switch back to P2

I/O device interrupt:
P2’s I/O complete
switch back to P2

Timer interrupt: P2 still has
time left, no context switch

Timer interrupt: P2 still has
time left, no context switch

4

1/23/2007CS 3204 Spring 2007 19

Aside: Kernel Threads

Process 1

Process 2

Kernel

user mode

kernel mode

Most OS (including Pintos) support kernel threads
that never run in user mode – in fact, in Project 1, all
Pintos threads run like that.

Most OS (including Pintos) support kernel threads
that never run in user mode – in fact, in Project 1, all
Pintos threads run like that.

Kernel Thread

Careful: “kernel thread” not the same as
kernel-level thread (KLT) – more on KLT later

1/23/2007CS 3204 Spring 2007 20

Mode Switching
• User → Kernel mode

– For reasons external or internal to CPU
• External (aka hardware) interrupt:

– timer/clock chip, I/O device, network card, keyboard, mouse
– asynchronous (with respect to the executing program)

• Internal interrupt (aka software interrupt, trap, or
exception)
– are synchronous
– can be intended: for system call (process wants to enter kernel

to obtain services)
– or unintended (usually): fault/exception (division by zero, attempt

to execute privileged instruction in user mode)
• Kernel → User mode switch on iret instruction

1/23/2007CS 3204 Spring 2007 21

Context vs Mode Switching
• Mode switch guarantees kernel gains control

when needed
– To react to external events
– To handle error situations
– Entry into kernel is controlled

• Not all mode switches lead to context switches
– Kernel code’s logic decides when – subject of

scheduling
• Mode switch always hardware supported

– Context switch (typically) not – this means many
options for implementing it!

