
CS 3204
Operating Systems

Godmar Back

Lecture 26

5/1/2007CS 3204 Spring 2007 3

Announcements
• Office Hours moved to one of McB 133, 116, or

124. Last office hours today.
• Please see revised grading policy posted on

website
– Project 3 has been graded (and should have been

posted)
– Will provide standing grade by tomorrow
– Accept project 4 until May 7, 23:59pm

• You must send email to your advisor by
Wednesday 5pm if you want to switch to P/F!

• Reading assignment: Ch 10, 11, 12

Filesystems

Consistency & Logging

FFS’s Consistency
• Berkeley FFS (Fast File System) formalized rules for filesystem

consistency
• FFS acceptable failures:

– May lose some data on crash
– May see someone else’s previously deleted data

• Applications must zero data out if they wish to avoid this + fsync
– May have to spend time to reconstruct free list
– May find unattached inodes → lost+found

• Unacceptable failures:
– After crash, get active access to someone else’s data

• Either by pointing at reused inode or reused blocks
• FFS uses 2 synchronous writes on each metadata operation that

creates/destroy inodes or directory entries, e.g., creat(), unlink(),
mkdir(), rmdir()
– Updates proceed at disk speed rather than CPU/memory speed

Write Ordering & Logging
• Problem: as disk sizes grew, fsck becomes infeasible

– Complexity proportional to used portion of disk
– takes several hours to check GB-sized modern disks

• In the early 90s, approaches were developed that
– Avoided need for fsck after crash
– Reduced the need for synchronous writes

• Two classes of approaches:
– Write-ordering (aka Soft Updates)

• BSD – the elegant approach
– Journaling (aka Logging)

• Used in VxFS, NTFS, JFS, HFS+, ext3, reiserfs

Write Ordering
• Instead of synchronously writing, record dependency in

buffer cache
– On eviction, write out dependent blocks before evicted block:

disk will always have a consistent or repairable image
– Repairs can be done in parallel – don’t require delay on system

reboot
• Example:

– Must write block containing new inode before block containing
changed directory pointing at inode

• Can completely eliminate need for synchronous writes
• Can do deletes in background after zeroing out directory

entry & noting dependency
• Can provide additional consistency guarantees: e.g.,

make data blocks dependent on metadata blocks

Write Ordering: Cyclic Dependencies

• Tricky case: A should be written before B, but B should
be written before A? … must unravel

Logging Filesystems
• Idea from databases: keep track of changes

– “write-ahead log” or “journaling”: modifications are
first written to log before they are written to actually
changed locations

– reads bypass log
• After crash, trace through log and

– redo completed metadata changes (e.g., created an
inode & updated directory)

– undo partially completed metadata changes (e.g.,
created an inode, but didn’t update directory)

• Log must be written to persistent storage

Logging Issues
• How much does logging slow normal operation

down?
• Log writes are sequential

– Can be fast, especially if separate disk is used
– Subtlety: log actually does not have to be written

synchronously, just in-order & before the data to
which it refers!

• Can trade performance for consistency – write log
synchronously if strong consistency is desired

• Need to recycle log
– After “sync()”, can restart log since disk is known to

be consistent

Physical vs Logical Logging

• What & how should be logged?
• Physical logging:

– Store physical state that’s affected
• before or after block (or both)

– Choice: easier to redo (if after) or undo (if before)
• Logical logging:

– Store operation itself as log entry (rename(“a”, “b”))
– More space-efficient, but can be tricky to implement

Summary
• Filesystem consistency is important
• Any filesystem design implies metadata

dependency rules
• Designer needs to reason about state of

filesystem after crash & avoid unacceptable
failures
– Needs to take worst-case scenario into account –

crash after every sector write
• Most current filesystems use logging

– Various degrees of data/metadata consistency
guarantees

Filesystems

Volume Managers
Linux VFS

Example: Linux VFS

• Reality: system must
support more than one
filesystem at a time
– Users should not notice a

difference unless
unavoidable

• Most systems, Linux
included, use an object-
oriented approach:
– VFS-Virtual Filesystem

Example: Linux VFS Interface
struct file_operations {

struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*aio_read) (struct kiocb *, char __user *, size_t, loff_t);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
ssize_t (*aio_write) (struct kiocb *, const char __user *, size_t, loff_t);
int (*readdir) (struct file *, void *, filldir_t);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *);
int (*release) (struct inode *, struct file *);
int (*fsync) (struct file *, struct dentry *, int datasync);
int (*aio_fsync) (struct kiocb *, int datasync);
int (*fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file_lock *);
ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff_t *);
ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff_t *);
ssize_t (*sendfile) (struct file *, loff_t *, size_t, read_actor_t, void *);
ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
int (*check_flags)(int);
int (*dir_notify)(struct file *filp, unsigned long arg);
int (*flock) (struct file *, int, struct file_lock *);

};

struct file_operations {
struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*aio_read) (struct kiocb *, char __user *, size_t, loff_t);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
ssize_t (*aio_write) (struct kiocb *, const char __user *, size_t, loff_t);
int (*readdir) (struct file *, void *, filldir_t);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *);
int (*release) (struct inode *, struct file *);
int (*fsync) (struct file *, struct dentry *, int datasync);
int (*aio_fsync) (struct kiocb *, int datasync);
int (*fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file_lock *);
ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff_t *);
ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff_t *);
ssize_t (*sendfile) (struct file *, loff_t *, size_t, read_actor_t, void *);
ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
int (*check_flags)(int);
int (*dir_notify)(struct file *filp, unsigned long arg);
int (*flock) (struct file *, int, struct file_lock *);

};

Volume Management
• Traditionally, disk is exposed as a block device

(linear array of block abstraction)
– Refinement: disk partitions = subarray within block

array
• Filesystem sits on partition
• Problems:

– Filesystem size limited by disk size
– Partitions hard to grow & shrink

• Solution: Introduce another layer – the Volume
Manager (aka “Logical Volume Manager”)

Volume Manager

• Volume Manager separates physical composition of
storage devices from logical exposure

ext3
/home

ext3
/usr

jfs
/opt

LV1 LV2 LV3

VolumeGroup

PV1 PV2 PV3 PV4

filesystems

logical
volumes

physical
volumes

RAID – Redundant Arrays of
Inexpensive Disks

• Idea born around 1988
• Original observation: it’s cheaper to buy multiple, small

disks than single large expensive disk (SLED)
– SLEDs don’t exist anymore, but multiple disks arranged as a

single disk still useful
• Can reduce latency by writing/reading in parallel
• Can increase reliability by exploiting redundancy

– I in RAID now stands for “independent” disks
• Several arrangements are known, 7 have “standard

numbers”
• Can be implemented in hardware/software
• RAID array would appear as single physical volume to

LVM

RAID 0

• RAID: Striping data across disk
• Advantage: If disk access go to different disk,

can read/write in parallel, decrease in latency
• Disadvantage: Decreased reliability

(MTTF(Array) = MTTF(Disk)/#disks

RAID 1

• RAID 1: Mirroring (all writes go to both disks)
• Advantages:

– Redundancy, Reliability – have backup of data
– Can have better read performance than single disk –

why?
– About same write performance as single disk

• Disadvantage:
– Inefficient storage use

Using XOR for Parity

• Recall:
– X^X = 0
– X^1 = !X
– X^0 = X

• Let’s set: W=X^Y^Z
– X^(W)=X^(X^Y^Z)=(X^X)^Y^Z=0^(Y^Z)=Y^Z
– Y^(X^W)=Y^(Y^Z)=0^Z=Z

• Obtain: Z=X^Y^W (analogously for X, Y)

X Y Z W

XOR 0 1

0 0 1

1 1 0

RAID 4

• RAID 4: Striping + Block-level parity
• Advantage: need only N+1 disks for N-disk capacity & 1

disk redundancy
• Disadvantage: small writes (less than one stripe) may

require 2 reads & 2 writes
– Read old data, read old parity, write new data, compute & write

new parity
– Parity disk can become bottleneck

RAID 5

• RAID 5: Striping + Block-level Distributed Parity
• Like RAID 4, but avoids parity disk bottleneck
• Get read latency advantage like RAID 0
• Best large read & large write performance
• Only remaining disadvantage is small writes

– “small write penalty”

Other RAID Issues

• RAID-6: dual parity, code-based, provides
additional redundancy (2 disks may fail before
data loss)

• RAID (0+1) and RAID (1+0):
– Mirroring+striping

• Interaction with filesystem
– WAFL (write anywhere filesystem layout) avoids in-

place updates to avoid small write penalty
– Based on LFS (log-structured filesystem) idea in

which all writes go to new locations

