CS 3204
Operating Systems

Lecture 24
Godmar Back

Virgini

mTec_h

Announcements

* Welcome back!

 Office Hours moved from McB 618 to 124

» Please see revised grading policy posted on
website
— Will provide standing grade by May 2
— Accept project 4 until May 7, 23:59pm

* Reading assignment: Ch 10, 11, 12

v“gmm‘a.r och CS 3204 Spring 2007 412612007

Filesystems

_vug] nia

mTﬁ;h

Files vs Disks

File Abstraction Disk Abstraction
» Byte oriented * Block oriented
* Names * Block #s
» Access protection » No protection
» Consistency * No guarantees
guarantees beyond block write
——Virginia

mTﬁ;h

Filesystem Requirements

« Naming
— Should be flexible, e.g., allow multiple names for
same files
— Support hierarchy for easy of use
* Persistence
— Want to be sure data has been written to disk in case
crash occurs
¢ Sharing/Protection
— Want to restrict who has access to files
— Want to share files with other users

mTec_h

FS Requirements (cont'd)

« Speed & Efficiency for different access patterns
— Sequential access
— Random access
— Sequential is most common & Random next
— Other pattern is Keyed access (not usually provided by OS)
¢ Minimum Space Overhead
— Disk space needed to store metadata is lost for user data
« Twist: all metadata that is required to do translation must
be stored on disk
— Translation scheme should minimize number of additional
accesses for a given access pattem
— Harder than, say page tables where we assumed page tables
themselves are not subject to paging!

Virgini

mTec_h

Overview

« Uses names for files
« Views files as
sequence of bytes

File Operations:
create(), unlink(), open(),
read(), write(), close()

Must implement translation
: (file name, file offset) —
File System (disk id, disk sector, sector offset)

Must manage free space on disk

‘ Buffer Cache ‘

Uses disk id + sector

‘8 Device Driver 8‘ indices

Virgini

mTec_h

The Big Picture

Per-process //: 1l
file descriptor | pata structures to keep [.
table track of open files Al BEiR
) o3
5 struct file S
2 inode + position + ...]
3 A g Directory
> struct dir =r Data
a inode + position ®
” File Descriptors
g struct inode - - - —- = = + - 1 (inodes) -
- Filesystem
PCB Open file table cached data and Information
metadata in buffer On-Disk
cache Data Structures
e /irginiia

i

Steps in Opening & Reading a File

e Lookup (via directory)
— find on-disk file descriptor’s block number
 Find entry in open file table (struct inode
list in Pintos)
— Create one if none, else increment ref count
« Find where file data is located
— By reading on-disk file descriptor
* Read data & return to user

_vug] nia

mTﬁ;h

Open File Table

* inode — represents file
— at most 1 in-memory instance per unique file
— #number of openers & other properties
« file — represents one or more processes using
an file
— With separate offsets for byte-stream
» dir — represents an open directory file
* Generally:
— None of data in OFT is persistent
— Reflects how processes are currently using files

— Lifetime of objects determined by open/close
« Reference counting is used

_vug] nia

mTﬁ;h

File Descriptors (“inodes”)

¢ Term “inode” can refer to 3 things:

1. in-memory inode
— Store information about an open file, such as how many
openers, corresponds to on-disk file descriptor

2. on-disk inode

— Region on disk, entry in file descriptor table, that stores
persistent information about a file — who owns it, where to
find its data blocks, etc.

3. on-disk inode, when cached in buffer cache
— A bytewise copy of 2. in memory
— Q.: Should in-memory inode store a pointer to
cached on-disk inode? (Answer: No.)
Vimini

mTec_h

Filesystem Information

. “ ” Free Block Map
+ Contains “superblock 0100011110101010101
stores information such as
size of entire filesystem, etc, L_—_SuperBlock

— Location of file descriptor table & free map
Free Block Map

— Bitmap used to find free blocks

— Typically cached in memory

Superblock & free map often replicated in
different positions on disk

Virgini

mTec_h

File Allocation Strategies

¢ Contiguous allocation
Linked files

Indexed files
Multi-level indexed files

Virgini

mTec_h

Contiguous Allocation

‘ ‘ File A ‘ ‘ File B ‘ ‘

« |dea: allocate files in contiguous blocks
« File Descriptor = (first block, length)

« Good sequential & random access

* Problems:

— hard to extend files — may require expensive
compaction

— external fragmentation

— analogous to segmentation-based VM
» Pintos’s baseline implementation does this
==Virginia

mTec_h

Linked Files
IR Fies
‘ ‘Panl‘ ‘ Part 1 HPartZ‘ ‘ Part 2 H
j 1

* Idea: implement linked list
— either with variable sized blocks
— or fixed sized blocks (“clusters”)
« Solves fragmentation problem, but now

— need lots of seeks for sequential accesses and
random accesses

— unreliable: lose first block, may lose file
 Solution: keep linked list in memory
— DOS: FAT File Allocation Table

_vug] nia

mTﬁ;h

« FAT stored at beginning of disk & DOS FAT

replicated for redundancy

« FAT cached in memory 16
* Size: n-bit entries, m-bit blocks — 2] 0
27N (m+n) limit 3| 5
- n=12, 16, 28 4| 1
— m=9 ... 15 (0.5KB-32KB) T3
» As disk size grows, m & n must
grow 6] -1
— Growth of n means larger in-memory 7| 11
table
" n 8 0
Filename Length First Block/ s 1
e 2 1 // " 'g
ubvv 4 3 7 ll l
“c’ 3 12 .
\‘\ 12| 10 J
P 1 4 |

_vug] nia

mTﬁ;h

Blocksize Trade-Offs

1000 e —— 1000
Disk space utilization

T 800 a0 §
k] "

] .
o 5=
X 600 8 3§
= g3
[g g
5 400 w §8
a a

200 20
Data rate
0 - 0
0 128 25 512 1K 2K 4K BK 18K 0

« Assume all files are 2KB in size (observed median filesz is about
2KB)
— Larger blocks: faster reads (because seeks are amortized & more bytes
per transfer)
— More wastage (2KB file in 32KB block means 15/16™ are unused)
« Source: Tanenbaum, Modern Operating Systems

Virgini

mTec_h

Indexed Allocation

FiIeA‘ ‘ File A ‘ ‘ File A ‘ ‘ File A ‘ ‘
Index Part 1 PaIrt 2 Part 3

« Single-index: specify maximum filesize,
create index array, then note blocks in
index
— Random access ok — one translation step
— Sequential access requires more seeks —

depending on contiguous allocation

» Drawback: hard to grow beyond maximum

mTec_h

Multi-Level Indices

» Used in Unix &
Pintos (P4)

Direct
Blocks

Indirect
Block

Double —

Multi-Level Indices

If filesz < N * BLKSIZE, can store all information

in direct block array

— Biased in favor of small files (ok because most files
are small...)

« Assume index block stores | entries

— If filesz < (I + N) * BLKSIZE, 1 indirect block suffices

¢ Q.: What's the maximum size before we need

Indi A . .
Block triple-indirect block?

;rr(ijple * Q.: What's the per-file overhead (best case,

ndirect

Block worst case?)
=’thj_nia =’thj_nia

P P
Logical View (Per File) offset in file Logical View (Per File) offset in file

Physical View (On Disk) (ignoring other files)

[TR

sector numbers on disk

sector numbers on disk

Physical View (On Disk) (ignoring other files)

—m@nia

[TR

