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Announcements

• Project 4 Help Sessions
– Th (tonight), Fr: 5:30-7:30 in McB 223

• Reading assignment: Ch 10, 11, 12

Disks & Filesystems

Buffer Cache

Disk Caching – Buffer Cache

• How much memory should be dedicated for it?
– In older systems (& Pintos), set aside a portion of physical 

memory 
– In newer systems, integrated into virtual memory system: e.g., 

page cache in Linux

• How should eviction be handled?
• How should prefetching be done?
• How should concurrent access be mediated (multiple 

processes may be attempting to write/read to same 
sector)?
– How is consistency guaranteed? (All accesses must go through 

buffer cache!)

• What write-back strategy should be used?

Buffer Cache in Pintos
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Cache Block Descriptor
- disk_sector_id, if in use
- dirty bit
- valid bit
- # of readers
- # of writers
- # of pending read/write 
requests
- lock to protect above variables
- signaling variables to signal 
availability changes
- usage information for eviction 
policy
- data (pointer or embedded)

A Buffer Cache Interface
// cache.h
struct cache_block; // opaque type
// reserve a block in buffer cache dedicated to hold this sector
// possibly evicting some other unused buffer
// either grant exclusive or shared access
struct cache_block * cache_get_block (disk_sector_t sector, bool exclusive);
// release access to cache block
void cache_put_block(struct cache_block *b);
// read cache block from disk, returns pointer to data
void *cache_read_block(struct cache_block *b);
// fill cache block with zeros, returns pointer to data
void *cache_zero_block(struct cache_block *b);
// mark cache block dirty (must be written back)
void cache_mark_block_dirty(struct cache_block *b);
// not shown: initialization, readahead, shutdown



2

Buffer Cache Rationale

• Do not combine allocating a buffer (a resource 
management decision) with loading the data into the 
buffer from file (which is not always necessary)

• Provide a way for buffer user to say they’re done with the 
buffer

• Provide a way to share buffer between multiple users
• More efficient interface (opaque type instead of block idx 

saves lookup, constant size buffers)

class BufferPool { // (2) Buffer Passing
public:
virtual void* getblock(int block) = 0;
virtual void dirtyblock(int block) = 0;
virtual int blocksize() = 0;

};

Compare to buffer 
pool assignment in 
CS2604

Differences:

Buffer Cache Sizing

• Simple approach
– Set aside part of physical memory for buffer 

cache/use rest for virtual memory pages as page 
cache – evict buffer/page from same pool

• Disadvantage: can’t use idle memory of other 
pool - usually use unified cache subject to 
shared eviction policy

• Windows allows user to limit buffer cache size
• Problem:

– Bad prediction of buffer caches accesses can result in 
poor VM performance (and vice versa)

Buffer Cache Replacement

• Similar to VM Page Replacement, differences:
– Can do exact LRU (because user must call 

cache_get_block()!)
– But LRU hurts when long sequential accesses –

should use MRU (most recently used) instead.

• Example reference string: ABCDABCDABCD, 
can cache 3:
– LRU causes 12 misses, 0 hits, 9 evictions
– How many misses/hits/evictions with MRU?

• Also: not all blocks are equally important, benefit 
from some hits more than from others

Buffer Cache Writeback Strategies

• Write-Through:
– Good for floppy drive, USB stick
– Poor performance – every write causes disk access

• (Delayed) Write-Back:
– Makes individual writes faster – just copy & set bit
– Absorbs multiple writes
– Allows write-back in batches

• Problem: what if system crashes before you’ve 
written data back?
– Trade-off: performance in no-fault case vs. damage 

control in fault case
– If crash occurs, order of write-back can matter

Writeback Strategies (2)

• Must write-back on eviction (naturally)
• Periodically (every 30 seconds or so)
• When user demands:

– fsync(2) writes back all modified data 
belonging to one file – database 
implementations use this

– sync(1) writes back entire cache

• Some systems guarantee write-back on 
file close

Buffer Cache 
Prefetching
• Would like to bring next block to 

be accessed into cache before 
it’s accessed
– Exploit “Spatial locality”

• Must be done in parallel
– use daemon thread and 

producer/consumer pattern
• Note: next(n) not always equal to 

n+1
– although we try for it – via clustering 

to minimize seek times
• Don’t initiate read_ahead if 

next(n) is unknown or would 
require another disk access to 
find out

b = cache_get_block(n, _);
cache_read_block(b);
cache_readahead(next(n));

queue q;
cache_readahead(sector s) {

q.lock();
q.add(request(s));
signal qcond;
q.unlock();

}
cache_readahead_daemon() {
while (true) {

q.lock();
while (q.empty())
qcond.wait();

s = q.pop();
q.unlock();
read sector(s);

}
}
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Filesystems

Files vs Disks

File Abstraction
• Byte oriented
• Names
• Access protection
• Consistency 

guarantees

Disk Abstraction
• Block oriented
• Block #s
• No protection
• No guarantees 

beyond block write

Filesystem Requirements

• Naming
– Should be flexible, e.g., allow multiple names for 

same files
– Support hierarchy for easy of use

• Persistence
– Want to be sure data has been written to disk in case 

crash occurs

• Sharing/Protection
– Want to restrict who has access to files
– Want to share files with other users

FS Requirements (cont’d)

• Speed & Efficiency for different access patterns
– Sequential access
– Random access
– Sequential is most common & Random next
– Other pattern is Keyed access (not usually provided by OS)

• Minimum Space Overhead
– Disk space needed to store metadata is lost for user data

• Twist: all metadata that is required to do translation must 
be stored on disk
– Translation scheme should minimize number of additional 

accesses for a given access pattern
– Harder than, say page tables where we assumed page tables 

themselves are not subject to paging!

Overview
File Operations: 

create(), unlink(), open(),
read(), write(), close()

Buffer Cache

Device Driver

File System

• Uses names for files
• Views files as 
sequence of bytes

Uses disk id + sector 
indices

Must implement translation 
(file name, file offset) →
(disk id, disk sector, sector offset)

Must manage free space on disk
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The Big Picture
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Data structures to keep 
track of open files

struct file
inode + position + …

struct dir
inode + position

struct inode

Per-process 
file descriptor 
table

B
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Open file table
Filesystem 
Information

File Descriptors
(inodes)

Directory
Data

File Data

Cached data and 
metadata in buffer 
cache

On-Disk
Data Structures

?


