
1

CS 3204
Operating Systems

Godmar Back

Lecture 23

4/15/2007CS 3204 Spring 2007 2

Announcements

• Project 4 Help Sessions
– Th (tonight), Fr: 5:30-7:30 in McB 223

• Reading assignment: Ch 10, 11, 12

Disks & Filesystems

Buffer Cache

Disk Caching – Buffer Cache

• How much memory should be dedicated for it?
– In older systems (& Pintos), set aside a portion of physical 

memory 
– In newer systems, integrated into virtual memory system: e.g., 

page cache in Linux

• How should eviction be handled?
• How should prefetching be done?
• How should concurrent access be mediated (multiple 

processes may be attempting to write/read to same 
sector)?
– How is consistency guaranteed? (All accesses must go through 

buffer cache!)

• What write-back strategy should be used?

Buffer Cache in Pintos

512 bytes

512 bytes

512 bytes

512 bytes

512 bytes

512 bytes

512 bytes
64

desc

desc

desc

desc

desc

desc

desc

Cache Block Descriptor
- disk_sector_id, if in use
- dirty bit
- valid bit
- # of readers
- # of writers
- # of pending read/write 
requests
- lock to protect above variables
- signaling variables to signal 
availability changes
- usage information for eviction 
policy
- data (pointer or embedded)

A Buffer Cache Interface
// cache.h
struct cache_block; // opaque type
// reserve a block in buffer cache dedicated to hold this sector
// possibly evicting some other unused buffer
// either grant exclusive or shared access
struct cache_block * cache_get_block (disk_sector_t sector, bool exclusive);
// release access to cache block
void cache_put_block(struct cache_block *b);
// read cache block from disk, returns pointer to data
void *cache_read_block(struct cache_block *b);
// fill cache block with zeros, returns pointer to data
void *cache_zero_block(struct cache_block *b);
// mark cache block dirty (must be written back)
void cache_mark_block_dirty(struct cache_block *b);
// not shown: initialization, readahead, shutdown



2

Buffer Cache Rationale

• Do not combine allocating a buffer (a resource 
management decision) with loading the data into the 
buffer from file (which is not always necessary)

• Provide a way for buffer user to say they’re done with the 
buffer

• Provide a way to share buffer between multiple users
• More efficient interface (opaque type instead of block idx 

saves lookup, constant size buffers)

class BufferPool { // (2) Buffer Passing
public:
virtual void* getblock(int block) = 0;
virtual void dirtyblock(int block) = 0;
virtual int blocksize() = 0;

};

Compare to buffer 
pool assignment in 
CS2604

Differences:

Buffer Cache Sizing

• Simple approach
– Set aside part of physical memory for buffer 

cache/use rest for virtual memory pages as page 
cache – evict buffer/page from same pool

• Disadvantage: can’t use idle memory of other 
pool - usually use unified cache subject to 
shared eviction policy

• Windows allows user to limit buffer cache size
• Problem:

– Bad prediction of buffer caches accesses can result in 
poor VM performance (and vice versa)

Buffer Cache Replacement

• Similar to VM Page Replacement, differences:
– Can do exact LRU (because user must call 

cache_get_block()!)
– But LRU hurts when long sequential accesses –

should use MRU (most recently used) instead.

• Example reference string: ABCDABCDABCD, 
can cache 3:
– LRU causes 12 misses, 0 hits, 9 evictions
– How many misses/hits/evictions with MRU?

• Also: not all blocks are equally important, benefit 
from some hits more than from others

Buffer Cache Writeback Strategies

• Write-Through:
– Good for floppy drive, USB stick
– Poor performance – every write causes disk access

• (Delayed) Write-Back:
– Makes individual writes faster – just copy & set bit
– Absorbs multiple writes
– Allows write-back in batches

• Problem: what if system crashes before you’ve 
written data back?
– Trade-off: performance in no-fault case vs. damage 

control in fault case
– If crash occurs, order of write-back can matter

Writeback Strategies (2)

• Must write-back on eviction (naturally)
• Periodically (every 30 seconds or so)
• When user demands:

– fsync(2) writes back all modified data 
belonging to one file – database 
implementations use this

– sync(1) writes back entire cache

• Some systems guarantee write-back on 
file close

Buffer Cache 
Prefetching
• Would like to bring next block to 

be accessed into cache before 
it’s accessed
– Exploit “Spatial locality”

• Must be done in parallel
– use daemon thread and 

producer/consumer pattern
• Note: next(n) not always equal to 

n+1
– although we try for it – via clustering 

to minimize seek times
• Don’t initiate read_ahead if 

next(n) is unknown or would 
require another disk access to 
find out

b = cache_get_block(n, _);
cache_read_block(b);
cache_readahead(next(n));

queue q;
cache_readahead(sector s) {

q.lock();
q.add(request(s));
signal qcond;
q.unlock();

}
cache_readahead_daemon() {
while (true) {

q.lock();
while (q.empty())
qcond.wait();

s = q.pop();
q.unlock();
read sector(s);

}
}



3

Filesystems

Files vs Disks

File Abstraction
• Byte oriented
• Names
• Access protection
• Consistency 

guarantees

Disk Abstraction
• Block oriented
• Block #s
• No protection
• No guarantees 

beyond block write

Filesystem Requirements

• Naming
– Should be flexible, e.g., allow multiple names for 

same files
– Support hierarchy for easy of use

• Persistence
– Want to be sure data has been written to disk in case 

crash occurs

• Sharing/Protection
– Want to restrict who has access to files
– Want to share files with other users

FS Requirements (cont’d)

• Speed & Efficiency for different access patterns
– Sequential access
– Random access
– Sequential is most common & Random next
– Other pattern is Keyed access (not usually provided by OS)

• Minimum Space Overhead
– Disk space needed to store metadata is lost for user data

• Twist: all metadata that is required to do translation must 
be stored on disk
– Translation scheme should minimize number of additional 

accesses for a given access pattern
– Harder than, say page tables where we assumed page tables 

themselves are not subject to paging!

Overview
File Operations: 

create(), unlink(), open(),
read(), write(), close()

Buffer Cache

Device Driver

File System

• Uses names for files
• Views files as 
sequence of bytes

Uses disk id + sector 
indices

Must implement translation 
(file name, file offset) →
(disk id, disk sector, sector offset)

Must manage free space on disk



4

The Big Picture

PCB

…
5
4
3
2
1
0

Data structures to keep 
track of open files

struct file
inode + position + …

struct dir
inode + position

struct inode

Per-process 
file descriptor 
table

B
uffer C

ache

Open file table
Filesystem 
Information

File Descriptors
(inodes)

Directory
Data

File Data

Cached data and 
metadata in buffer 
cache

On-Disk
Data Structures

?


