CS 3204
Operating Systems

Lecture 23

Godmar Back

L

(e

Announcements

» Project4 Help Sessions
— Th (tonight), Fr: 5:30-7:30 in McB 223
* Reading assignment: Ch 10, 11, 12

L

CS 3204 Spring 2007 4/15/2007 2

(e

Disks & Filesystems

Buffer Cache

L

(e

Disk Caching — Buffer Cache

¢ How much memory should be dedicated for it?

— In older systems (& Pintos), set aside a portion of physical
memory

— In newer systems, integrated into virtual memory system: e.g.,
page cache in Linux

* How should eviction be handled?

* How should prefetching be done?

* How should concurrent access be mediated (multiple
processes may be attempting to write/read to same
sector)?

— How is consistency guaranteed? (All accesses must go through
buffer cache!)

* What write-back strategy should be used?

L

(e

Buffer Cache in Pintos

@che Block Descriptor \—; [desc b 512 bytes |
- disk_sector_id, if in use
- dirty bit V[desc 512 bytes |
- valid bit
- # of readers ‘ et H SCFIES ‘
- # of writers [desc P 512 bytes |
- # of pending read/write :
requests
- lock to protect above variables
- signaling variables to signal \ desc H 512 bytes \
availability changes
- usage information for eviction [desc PBf 512 bytes |
olic
Pdalg (pointer or embedded) ‘ desc H 512hytes ‘

L

(e

A Buffer Cache Interface

Il cache.h

struct cache_block; /I opaque type

Il reserve a block in buffer cache dedicated to hold this sector
/I possibly evicting some other unused buffer

Il either grant exclusive or shared access

struct cache_block * cache_get_block (disk_sector_t sector, bool exclusive);
Il release access to cache block

void cache_put_block(struct cache_block *b);

Il read cache block from disk, returns pointer to data

void *cache_read_block(structcache_block *b);

/I fill cache block with zeros, returns pointer to data

void *cache_zero_block(struct cache_block *b);

/I mark cache block dirty (must be written back)

void cache_mark_block_dirty(struct cache_block *b);

/I not shown: initialization, readahead, shutdown

L

(e

Buffer Cache Rationale

class BufferPool { // (2) Buffer Passing
public:
virtual void* getblock(int block) = 0;

Compare to buffer
pool assignment in
CS2604 virtual void dirtyblock(int block) = 0;
virtual int blocksize() = 0;
Differences:)

« Do not combine allocating a buffer (a resource
management decision) with loading the data into the
buffer from file (which is not always necessary)

« Provide a way for buffer user to say they're done with the
buffer

* Provide a way to share buffer between multiple users
« More efficient interface (opaque type instead of block idx
saves lookup, constant size buffers)
_“

Buffer Cache Sizing

« Simple approach
— Set aside part of physical memory for buffer
cache/use rest for virtual memory pages as page
cache — evict buffer/page from same pool
« Disadvantage: can't use idle memory of other
pool - usually use unified cache subject to
shared eviction policy
¢ Windows allows user to limit buffer cache size
¢ Problem:
— Bad prediction of buffer caches accesses can result in
poor VM performance (and vice versa)

L

(e

Buffer Cache Replacement

« Similar to VM Page Replacement, differences:

— Can do exact LRU (because user must call
cache_get_block()!)

— But LRU hurts when long sequential accesses —
should use MRU (most recently used) instead.

« Example reference string: ABCDABCDABCD,
can cache 3:
— LRU causes 12 misses, 0 hits, 9 evictions
— How many misses/hits/evictions with MRU?

« Also: not all blocks are equally important, benefit
from some hits more than from others

L

(e

Buffer Cache Writeback Strategies

* Write-Through:
— Good for floppy drive, USB stick
— Poor performance — every write causes disk access
* (Delayed) Write-Back:
— Makes individual writes faster — just copy & set bit
— Absorbs multiple writes
— Allows write-back in batches
« Problem: what if system crashes before you've
written data back?

— Trade-off: performance in no-fault case vs. damage
control in fault case

— If crash occurs, order of write-back can matter

L

(e

Writeback Strategies (2)

» Must write-back on eviction (naturally)
* Periodically (every 30 seconds or so)
* When user demands:

— fsync(2) writes back all modified data
belonging to one file — database
implementations use this

—sync(1) writes back entire cache

» Some systems guarantee write-back on
file close

b = cache_get_block(n, _);
cache_read_block(b);
cache_readahead(next(n));

Buffer Cache

Prefetching

* Would like to bring next block to [queue g;

be accessed into cache before cache_readahead(sectors) {
it's accessed q.lock();
— Exploit “Spatial locality” g;;::l(f:fs:;t(s));
: i :
¢ Must be done in parallel Gy

— use daemon thread and
producer/consumer pattern cache_readahead_daemon() {
* Note: next(n) not always equal to | while (true) {

n+l q.lock();
— although we try for it — via clustering while (g.empty())
to minimize seek times qcond.wait();

+ Don'tinitiate read_ahead if 5= ?-P‘IJ(P(_);
next(n) is unknown or would e
require another disk access to e SI(ER
find out }

L

(e

L

(e

Files vs Disks

File Abstraction Disk Abstraction

« Byte oriented « Block oriented

* Names « Block #s

« Access protection * No protection

« Consistency * No guarantees
guarantees beyond block write

FS Requirements (cont’'d)

* Speed & Efficiency for different access patterns
— Sequential access
— Random access
— Sequential is most common & Random next
— Other pattern is Keyed access (not usually provided by OS)
¢ Minimum Space Overhead
— Disk space needed to store metadata is lost for user data
« Twist: all metadata that is required to do translation must
be stored on disk

— Translation scheme should minimize number of additional
accesses for a given access pattern

— Harderthan, say page tables where we assumed page tables
themselves are not subject to paging!

L

(e

Filesystems

L

(e

Filesystem Requirements

* Naming
— Should be flexible, e.g., allow multiple names for
same files
— Support hierarchy for easy of use
« Persistence

— Wantto be sure data has been written to disk in case
crash occurs

« Sharing/Protection
— Wantto restrict who has access to files
— Wantto share files with other users

L

(e

Overview

* Uses names for files
« Views files as
sequence of bytes

File Operations:
create(), unlink(), open(),
read(), write(), close()

Must implement translation
(file name, file offset) —

File System (diskid, disk sector, sector offset)

Must manage free space on disk

| Buffer Cache ‘

Uses disk id + sector

‘a Device Driver 8‘ indices

(e

The Big Picture

Per-process // L 1]
file descriptor | pata structures to keep [)
table track of open files FREE
o
struct file EY
5 . " @
2 inode + position + ... -
3 o Directory
. (=]
struct dir S Data
2 X L]
1 inode + position
P File Descriptors|
g structinode - - - -"= - -1 - P (inodes) o
] Filesystem
. Openfile table Cached data and Information
metadata in buffer On-Disk
cache Data Structures

NES

