
CS 3204
Operating Systems

Godmar Back

Lecture 22

4/12/2007CS 3204 Spring 2007 2

Announcements

• Project 3 due tomorrow Wed Apr 11, 
11:59pm
– See forum for additional office hours

• Check curator for P2 scores 
– (tonight/early tomorrow)

• Project 4 Help Sessions
– Th, Fr: 5:30-7:30 in McB 223

Segmentation

4/12/2007CS 3204 Spring 2007 4

Segmentation

• Historical alternative to paging
• Instead of dividing virtual address space in 

many small, equal-sized pages, divide into 
a few, large segments

• Virtual address is then (segment number, 
segment offset)

segno segmentoffset

Segment Table
seg base | seg limit

m
em

ory

+
< limit?

4/12/2007CS 3204 Spring 2007 5

Segmentation (2)
• Advantages: 

– little internal fragmentation “segments can be sized 
just right”

– easy sharing – can share entire code segment
– easy protection – only have to set access privileges 

for segment
– small number of segments means small segment 

table sizes
• Disadvantages:

– external fragmentation (segments require physically 
continuous address ranges!)

– if segment is partially idle, can’t swap out

4/12/2007CS 3204 Spring 2007 6

Segmentation (3)
• Pure segmentation is no longer used

– (Most) RISC architectures don’t support segmentation at all
– Other architectures combine segmentation & paging 

• Intel x86 started out with segmentation, then added 
paging
– Segment number is carried in special set of registers (GS, ES, 

FS, SS), point to “selectors” kept in descriptor tables
– Instruction opcode determines with segment is used
– Today: segmentation unit is practically unused (in most 32-bit 

OS, including Pintos): all segments start at 0x00000000 and end 
at 0xFFFFFFFF (Exception: for thread-local data!)

– Do not confuse with Pintos’s code/data segments, which are 
linear subregions of virtual addresses spanning multiple virtual 
pages

• Note: superpages are somewhat of a return to 
segmentation



4/12/2007CS 3204 Spring 2007 7

Combining Segmentation & Paging

4/12/2007CS 3204 Spring 2007 8

Mem Mgmt Without Virtual Memory

• Book discusses this as motivation
– Historically important, and still important for VM-less 

devices (embedded devices, etc.)
• Imagine if we didn’t have VM, it would be hard or 

impossible to
– Retain the ability to load a program anywhere in 

memory
– Accommodate programs that grow or shrink in size
– Use idle memory for other programs quickly
– Move/relocate a running program in memory

• VM drastically simplifies systems design

Disks & Filesystems

What Disks Look Like

Hitachi Deskstar T7K500 SATA

Disk Schematics

Source: Micro House PC 
Hardware Library Volume I: 
Hard Drives

See narrated flash animation at 
http://cis.poly.edu/cs2214rvs/disk.swf

Tracks, Sectors, Cylinders



Typical Disk Parameters

• 2-30 heads (2 per platter)
– Modern disks: no more than 4 platters

• Diameter: 2.5” – 14”
• Capacity: 20MB-500GB
• Sector size: 64 bytes to 8K bytes

– Most PC disks: 512 byte sectors
• 700-20480 tracks per surface
• 16-1600 sectors per track

What’s important about disks from 
OS perspective

• Disks are big & slow - compared to RAM
• Access to disk requires

– Seek (move arm to track) – to cross all tracks anywhere from 20-
50ms, on average takes 1/3.

– Rotational delay (wait for sector to appear under track) 7,200rpm 
is 8.3ms per rotation, on average takes ½: 4.15ms rot delay

– Transfer time (fast: 512 bytes at 998 Mbit/s is about 3.91us)
• Seek+Rot Delay dominates
• Random Access is expensive

– and unlikely to get better
• Consequence:

– avoid seeks
– seek to short distances
– amortize seeks by doing bulk transfers

Disk Scheduling
• Can use priority scheme
• Can reduce avg access time by sending requests to disk 

controller in certain order
– Or, more commonly, have disk itself reorder requests

• SSTF: shortest seek time first
– Like SJF in CPU scheduling, guarantees minimum avg seek 

time, but can lead to starvation
• SCAN: “elevator algorithm”

– Process requests with increasing track numbers until highest 
reached, then decreasing etc. – repeat

• Variations: 
– LOOK – don’t go all the way to the top without passengers
– C-SCAN: - only take passengers when going up

Accessing Disks

• Sector is the unit of atomic access
• Writes to sectors should always complete, 

even if power fails
• Consequence of sector granularity:

– Writing a single byte requires read-modify-
write void set_byte(off_t off, char b) {

char buffer[512];
disk_read(disk, off/DISK_SECTOR_SIZE, buffer);
buffer[off % DISK_SECTOR_SIZE] = b;
disk_write(disk, off/DISK_SECTOR_SIZE, buffer);

}

void set_byte(off_t off, char b) {
char buffer[512];
disk_read(disk, off/DISK_SECTOR_SIZE, buffer);
buffer[off % DISK_SECTOR_SIZE] = b;
disk_write(disk, off/DISK_SECTOR_SIZE, buffer);

}


