CS 3204
Operating Systems

Lecture 21

Godmar Back

_“Ww@a

Announcements

» Project3 due Apr 11

L

CS 3204 Spring 2007 4/8/2007 2

(e

VM Design Issues &
Techniques

L

(e

of Page Faults vs Frame Allocation

P Fat Biale

wa &
w L * Pmer of Framies Albraed
« Desired behavior of paging algorithm: reduce page fault
rate below “acceptable level” as number of available
frames increases

¢ Q.:does increasing number of physical frames always
reduce page fault rate?

— A.:usually yes, but for some algorithms not guaranteed
(“Belady’'s anomaly”)

L

CS 3204 Spring 2007 4/8/2007 4

(e

Page Buffering

« Select victim (as dictated by page replacement algorithm
—works as an add-on to any algorithm we discussed)

» Butdon't evict victim — put victim on tail of victim queue.
Evict head of that queue instead.

« Ifvictim page is touched before it moves to head of
victim queue, simply reuse frame

« Further improvement: keep queue of unmodified victims
(for quick eviction — aka free page list) and separate
queue of modified pages (aka modified list - allows write-
back in batch)

* Related issue: when should you write modified pages to

(e

disk?
— Options: demand cleaning vs pre-cleaning (or pre-flushing)
o] CS 3204 Spring 2007 4/8/2007 5

Local Replacement

« So far, considered global replacement algorithms
— Most widely used

* Butcould also divide memory in pools
— Per-process or per-user

« On frame allocation, requesting process will evict pages
from pool to which it belongs

* Advantage: Isolation P1ieeq P2,,ee| P2ysed

— No between-process interference
« Disadvantage: Isolation
— Can'ttemporarily “borrow” frames from other pools
¢ Q.:How big should pools be?
— And when should allocations change?
%‘Rigﬂ%ﬁ@l

—_ 0

CS 3204 Spring 2007 4/8/2007 6

When Virtual Memory works well

¢ Locality

— 80% of accesses are to 20% of pages

— 80% of accesses are made by 20% of code

Temporal locality:

— Page that's accessed will be accessed again in near
future

« Spatial locality:
— Prefetching pays off: if a page is accessed,

neighboring page will be accessed

« If VM works well, average access to all memory

is about as fast as access to physical memory

L

CS 3204 Spring 2007 4/8/2007 7

(e

VM Access Time & Page Fault Rate

access time = p * memory access time
+ (1-p) * (page fault service time + memory access time)
« Consider expected access time in terms of fraction p of
page accesses that don't cause page faults.
¢ Then 1-p is page fault frequency
» Assume p =0.99, assume memory is 100ns fast, and
page fault servicing takes 10ms —how much slower is
your VM system compared to physical memory?
* access time = 99ns + 0.01*(10000100) ns = 100,000ns
or 0.1ms
— Compareto 100ns or 0.0001ms speed = about 1000x slowdown
« Conclusion: even low page fault rates lead to huge
slowdown

L

CS 3204 Spring 2007 4/8/2007 8

(e

Thrashing: When Virtual Memory
Does Not Work Well

« System accesses a page, evicts another page
from its frame, and next access goes to just-
evicted page which must be brought in

* Worstcase a phenomenon called Thrashing

— leads to constant swap-out/swap-in

— 100% disk utilization, but no process makes progress
« CPU most idle, memory mostly idle

CS 3204 Spring 2007 4/8/2007 9

When does Thrashing occur?

» Process does exhibit locality, but is simply
too large
— Here: (assumption of) locality hurts us

» Process doesn't exhibit locality
— Does not reuse pages

» Processes individually fit & exhibit locally,
but in total are too large for the system to
accommodate all

L

CS 3204 Spring 2007 4/8/2007 10

What to do about Thrashing?

* Buy more memory
— ultimately have to do that

— increasing memory sizes ultimately reason why
thrashing is nowadays less of a problem than in the
past — still OS must have strategy to avoid worst case

« Ask user to kill process

« Let OS decide to kill processes that are thrashing
— Linux has an option to do that

« In many cases, still: reboot only time-efficient

option
— But OS should have reasonable strategy to avoid it if it

can
“W CS 3204 Spring 2007 4/8/2007 1

(e

(e

OS Strategies to prevent thrashing

« Or contain its effects

« Define: “working set” (1968, Denning)

« Set of pages that a process accessed during
some window/period of length T in the past
— Hope that it'll match the set accessed in the future

« |dea: if we can manage to keep working set in
physical memory, thrashing will not occur

L

CS 3204 Spring 2007 4/8/2007 12

(e

Working Set

* Suppose we know or can estimate working set —
how could we use it?
« |dea 1: give each process as much memory as
determined by size of its WS
« |dea 2: preferably evict frames that hold pages
that don't seem to be part of WS
« |dea 3: if WS cannot be allocated, swap out
entire process (and exclude from scheduling for
a while)
— “medium term scheduling”, “swap-out scheduling”
— (Suspended) inactive vs active processes
— Or don’t admit until there’s enough frames for their
WS (“long term scheduling”)
= I €S 3204 Spring 2007 41812007 13

(e

Estimating Working Set

« Compute “idle time” for each page
— Amount of CPU time process received since last access to page
* On page fault, scan resident pages

— If referenced, set idle time to O

— If not referenced, idle_time += time since last scan

— Ifidle_time > T, consider to not be part of working set

« Thisis known as working set replacement algorithm
[Denning 1968]
* Variation is WSClock [Carr 1981]

— treats working set a circular list like global clock does, and
updates “time of last use” (using a process's CPU use as a
measure) — evicting those where
T_last<T_current-T

L

. CS 3204 Spring 2007 4/8/2007 14
NES —

Page Fault Frequency

¢ Alternative method of working set estimation
— PFF: # page faults/instructions executed

— Pure CPU perspective vs memory perspective
provided by WSClock

« Below threshold — can take frames away from
process

« Above threshold — assign more frames

Far above threshold — suspect thrashing & swap

out

Potential drawback: can be slow to adopt to

periods of transition

L

CS 3204 Spring 2007 4/8/2007 15

(e

Clock-PRO

¢ Clock and algorithms like it
try to approximate LRU:
— LRU does not work well for:
— Sequential scans, large loops
 Alternative:
— Reuse distance: should replace page with large reuse
distance
Clock-PRO: Idea — extend our focus by
remembering information about pages that were
evicted from frames previously

See [Jiang 2005]
L

CS 3204 Spring 2007 4/8/2007 16

(e

