
1

CS 3204
Operating Systems

Godmar Back

Lecture 20

4/8/2007CS 3204 Spring 2007 2

Announcements

• Midterm has been graded
– Will hand back at the end of this lecture

• Project 3 Design Milestone
– Should have been returned before midterm –

it’s your responsibility to follow up if
feedback’s unclear

– Should have reached point where all
regression tests pass again after s-page table
is introduced (if you follow suggested outline)

Physical Memory
Management

(cont’d)

4/8/2007CS 3204 Spring 2007 4

Physical Memory Management

• Aka frame table management
• Task: keep efficiently track of

which physical frames are used
• Allocate a frame when paging in,

or eager loading
• Deallocate a frame when

process exits or when page is
evicted (later) 0

MAX_PHYSICAL

frames

4/8/2007CS 3204 Spring 2007 5

Approach 1: Bitmaps

• Use bitmap to represent free,
used pages

• Sometimes division in user &
kernel pool

• Pintos (palloc.c) does that: keeps
two bitmaps
– Kernel pool: 010010
– User pool: 0000001

• You will manage user pool only

0

MAX_PHYSICAL

frames
0100100000001

us
er

 p
oo

l
ke

rn
el

 p
oo

l

4/8/2007CS 3204 Spring 2007 6

Approach 2: Buddy Allocator
• Logically

subdivide
memory in
power-of-two
blocks

• Round up on
allocation to
next power
of 2

• Split block on
allocation
(if necessary)

• Coalesce on deallocation (if possible)
– Coalescing can be delayed

• Used in Linux: allocation requests are always multiple of pages, max
blocksize is 4MB

2

4/8/2007CS 3204 Spring 2007 7

Fragmentation

• Def: The inability to use memory that is
unused.

• Internal fragmentation:
– Not all memory inside an allocated unit is

used; rest can’t be allocated to other users

• External fragmentation:
– Impossible to satisfy allocation request even

though total amount of memory > size
requested

4/8/2007CS 3204 Spring 2007 8

Buddy Allocator & Fragmentation

• Q.: what is the average internal fragmentation
(per allocated object) for
– buddy allocator with size 2^n?
– in bitmap allocator for objects of size n*s, where each

bit represents a unit of size s?
– in first-fit allocator from project 0?

• Q.: what external fragmentation can you expect
from buddy allocator scheme?

• Q.: what’s a good way to measure fragmentation
in general?

4/8/2007CS 3204 Spring 2007 9

Page Size & Fragmentation

• How should a system’s architect choose the
page size? – Trade-Off

• Large pages:
– Larger internal fragmentation
– (not an issue if most pages are full…)
– Page-in & write-back cost larger

• Small pages:
– Higher overhead to store page table (more entries to

maintain)
• Modern architectures provide support for “super

pages” – 2MB or 4MB

Page Replacement

4/8/2007CS 3204 Spring 2007 11

Page Replacement Algorithms

• Goal: want to minimize number of (major) page
faults (situations where a page must be brought
in from disk.)
– Also: want to reduce their cost (ideally, evict those

pages from their frames that are already on disk –
save writeback time)

• Number of algorithms have been developed
– Global replacement algorithms

• Treat frames used by all processes equally

– Local replacement
• Pool frames according to user or process when considering

replacement

4/8/2007CS 3204 Spring 2007 12

Replacement Algorithms

• Optimal:
– “know the future”
– Obviously impractical, just a benchmark for

comparison/analysis

• FIFO – evict oldest page
• LRU – evict least recently used page
• Clock algorithm (“NRU”)

– Enhanced versions of clock

3

4/8/2007CS 3204 Spring 2007 13

Optimal or MIN Replacement

• To analyze algorithms, consider stream of accesses;
each access falls into a given page, e.g.
2 3 2 1 5 2 4 5 3 2 5 2

• Optimal (also known as MIN, or Belady’s algorithm)
– Replace the page that is accessed the farthest in the future, e.g.

that won’t be accessed for the longest time

• Problem: don’t know what the future holds

2 3 2 1 5 2 4 5 3 2 5 2

2 2 2 2 2 2 4 4 4 2 2 2

3 3 3 3 3 3 3 3 3 3 3

1 5 5 5 5 5 5 5 5

4/8/2007CS 3204 Spring 2007 14

FIFO

• Evict oldest page:
– Problem: completely ignores usage pattern –

first pages loaded are often frequently
accessed

2 3 2 1 5 2 4 5 3 2 5 2

2 2 2 2 5 5 5 5 3 3 3 3

3 3 3 3 2 2 2 2 2 5 5

1 1 1 4 4 4 4 4 2

4/8/2007CS 3204 Spring 2007 15

LRU

• Evict least-recently-used page
• Great if past = future: becomes MIN!
• Major problem: would have to keep track of

“recency” on every access, either timestamp, or
move to front of a list
– Infeasible to do that because of cost

2 3 2 1 5 2 4 5 3 2 5 2

2 2 2 2 2 2 2 2 3 3 3 3

3 3 3 5 5 5 5 5 5 5 5

1 1 1 4 4 4 2 2 2

4/8/2007CS 3204 Spring 2007 16

Clock

• Also known as NRU (Not Recently Used) or 2nd Chance
• Two ways to look at it:

– Approximation of LRU
– FIFO, but keep recently used pages

• Use access (or reference bit)
– R=1 was accessed
– R=0 was not accessed

• Hand moves & clears R
• Hand stops when it finds R==0

R=1

R=1

R=0

R=0R=1

R=0

R=1

4/8/2007CS 3204 Spring 2007 17

Clock Example
• In this example, assume hand advances only on

allocation
– as you can do for Pintos P3

• To avoid running out of frames, use clock daemon that
periodically scans pages and resets their access bits
– Q.: what if clock daemon scans too fast?
– Q.: what if too slow?

2 3 2 1 5 2 4 5 3 2 5 2

2* 2* 2* 2* 5* 5* 5* 5* 3* 3* 3* 3*

3* 3* 3* 3 2* 2* 2* 2 2* 2 2*

1* 1 1 4* 4* 4 4 5* 5*

* means R=1 (page was accessed since last scan)

4/8/2007CS 3204 Spring 2007 18

Variations on Clock Algorithm

• 2-handed Clock
– If lots of frames, may need to scan many pages until

one is found – so introduce second hand
• Leading hand clears ref bits
• Trailing hand evicts pages

• Enhanced Clock: exploit modified (or “dirty”) bit
– First find unreferenced & unmodified pages to evict
– Only if out of those, consider unreferenced & modified

pages
– Clear reference bit as usual

4

4/8/2007CS 3204 Spring 2007 19

N-bit Clock Algorithm

• 1-bit says was recently used or wasn’t
– But how recently?

• Idea: associate n-bit counter with page
– “age” or “act_count”
– have R-bit as before

• When hand passes page
– act_count >>= 2 aging
– act_count |= (R << (n-1)) recent access

• Replace page with lowest act_count

