CS 3204
Operating Systems

Lecture 19
Godmar Back

Vireini

W'Ihch

Announcements

» Midterm March 29

— See announcement + sample midterms on class

website
 Fix remaining project 2 bugs (if any)

— Reminder: by end of semester, passing students will
have provided a deliverable that achieves >= 90%
test score on project 2 (or a 100% test score on
project 3 or 4’s regression tests.) — multi-oom not part
of these

» Project 3 Design Milestone

— Will return before midterm

U%I&h CS 3204 Spring 2007 3/27/2007 2

Virtual Memory

Paging Techniques (cont'd)

Demand paging

* Idea: only keep data in memory that's being

used

— Needed for virtualization — don’t use up physical
memory for data processes don't access

Requires that actual allocation of physical page

frames be delayed until first access

* Many variations

— Lazy loading of text & data, mmapped pages & newly
allocated heap pages

— Copy-on-write

Virginia Virginia CS 3204 Spring 2007 3/27/2007 4
G G
FFFFFFFF £ FFFFFFFF

Lazy Loading

Pintos loads the first process ...

C0400000

fos-then starts the first
T

m PR
o PrOCESS....
— ~.
0000000 .
e T
ocated eagerly
) e
8 data + code pages are i used

in page table; but no physical ™
~frame has been allocated

U%M CS 3204 Spring 2007 3/27/2007 5

Stack Growth

Pintos loads the first process ...

P1

C0400000

1GB

C0000000_,

3GB

used

U%M CS 3204 Spring 2007 3/27/2007 6




FFFFFFFF
mmap() . .
Lazy Loading & Prefetching
0400000 Pintos loads the first process ...
- hen starts the first « Typically want to do some prefetching when faulting in
o page
— Reduces latency on subsequent faults
¢ Q.: how many pages? which pages?
— Too much: waste time & space fetching unused pages
€0000000_!, - qu Iittle:-pay (relatively large) page fal.-lh latency too often
« Predict which pages the program will access next (how?)
© ""b}{g’e’f’a’un A ¢ Let applycaﬂons give hints to OS
o g — If applications knows
™ use! — Example: madvise(2)
— Usual conflict: what's best for application vs what’s best for
é‘; system as a whole
0 —
v@nﬂmm CS 3204 Spring 2007 3/27/2007 7 vugjmﬁ'l’ed} CS 3204 Spring 2007 3/27/2007 8
« Sometimes, want to create a copy of a page: » Suppose page fault occurs, but no free physical frame is there to
— Example: Unix fork() creates copies of all parent’s pages in the allocate_
child * Must evict frame
i i — Find victim frame (how — later)
‘ OptDImlfatIOI"l. PTE h 2 PTE inting t — Find & change old page table entry pointing to the victim frame
- f ont copy pages, copy S —now have S pointing to — If datain it isn't already somewhere on disk, write to special area on
rame disk (“swap space”)
— Setall PTEs read-only — Install in new page table entry
— Read accesses succeed — Resume
— On Write accgsslacfopy the page into new frame, update PTEs to * Requires check on page fault if page has been swapped out — fault
point to new & old frame in if so
» Looks like each have their own copy, but postpone + Some subtleties with locking:
actual copying until one is writing the data — How do >r/1ou pLevemtapro_ctte?s froytmﬁ \;vritingoto a page some other
_ B " _ process has chosen 1o evict from Its frame?
mgﬁg IaSC?:I;?ggt one will ever touch the data — never have to — What do you do if a process faults on a page that another process is in
Py the middle of paging out?
V“Einﬁ,red] CS 3204 Spring 2007 3/27/2007 9 vugjmﬁ'l‘ed] CS 3204 Spring 2007 3/27/2007 10

Page Eviction Example

PTE:

process id = ? (if appl.),
virtual addr = ?,

dirty bit = 2,

accessed bit = 2,

Process A needs a frame l
decides it wants this frame

Q.: how will it find the PTE, —
if any, that points to it?

victim frame:
phys addr = ...

Linux uses a so-called “rmap” for that that links frames to PTE

v@m‘mm CS 3204 Spring 2007 3/27/2007 1

Managing Swap Space

« Continuous region on disk
- Z’Arel:erably on separate disk, but typically a partition on same
isl
« Different allocation strategies are possible
— Simplest: when page must be evicted, allocate swap space for
page; deallocate when page is paged back in
— Or: allocate swap space upfront
— Should page’s position in swap space change? What if same
page is paged out multiple times?
« Can be managed via bitmap 0100100000001
— Free/used bits for each page that can be stored
— Pintos: note 1 page == 8 sectors

v@m‘mm CS 3204 Spring 2007 3/27/2007 12




Locking Frames

e Aka “pinned” or “wired” pages or frames

« If another device outside the CPU (e.g.,
DMA by network controller) accesses a
frame, it cannot be paged out
— Device driver must tell VM subsystem about

this

« Also useful if you want to avoid a page
fault while kernel code is accessing a user
address, such as during a system call.

v“gmm‘a.r l CS 3204 Spring 2007 3/27/2007 13

Accessing User Pointers & Paging

» Kernel must check that user pointers are valid
— P2: easy, just check range & page table
» Harder when swapping:

— validity of a pointer may change between check &
access (if another process sneaks in and selects
frame mapped to an already checked page for
eviction)

« Possible solution: |f (verify_user(addn)
i process_terminate();
— verify & lock, /I what if addr’s frame is just now
then access, /I swapped out by another process?
then unlock *addr = value;
_v“gmm‘a.r och CS 3204 Spring 2007 3/27/2007 14

Physical Memory
Management

_vug] nia

mTed]

Physical Memory Management

» Aka frame table management MAX_PHYSICAL
Task: keep efficiently track of any
which physical frames are used

Allocate a frame when paging in,
or eager loading

» Deallocate a frame when —
rocess exits or when page is
pre pag —
evicted (later) 2o
frames
V‘ugmla CS 3204 Spring 2007 3/27/2007 16

mTed]

Approach 1: Bitmaps

» Use bitmap to represent free,
MAX_PHYSICAL | 1ced pages

oy + Sometimes division in user &

5 kernel pool
§ + Pintos (palloc.c) does that: keeps
g two bitmaps
= — Kernel pool: /1 1
— User pool: 1
g _f * You will manage user pool only
3
2
5 | — ~ _
—  frames \1 1 \\l
==Virgini i
“gﬂmla.r och CS 3204 Spring 2007 3/27/2007 17

« Logically " o~
subdivide =

memory in e g s
power-of-two \ "
blocks _. g

* Round up on R @ @] o
allocation to S
next power 2
of 2 © @
«  Split block on [\
allocation ™ [al=]
(if necessary) i |

Approach 2: Buddy Qllocator

ETIELIZTTCLS
« Coalesce on deallocation (if possible)
— Coalescing can be delayed

« Used in Linux: allocation requests are always multiple of pages, max
blocksize is 4MB

v“gmm‘a.r och CS 3204 Spring 2007 3/27/2007 18




Buddy Example - Allocation

Buddy Example - Deallocation

——

Def: The inability to use memory that is

unused.

Internal fragmentation:

— Not all memory inside an allocated unit is
used; rest can’t be allocated to other users

External fragmentation:

— Impossible to satisfy allocation request even
though total amount of memory > size
requested

CS 3204 Spring 2007 3/27/2007 21

mTedl

‘ 64 KB ‘ ‘ 16KB ‘4KB‘4KB‘4KB‘4KB‘ 32KB
Alloc (16KB) Free()

‘ 16KB ‘ 16KB ‘ 32KB ‘ ‘ 16KB ‘4KB‘4KB‘4KB‘4KB‘ 32KB
Alloc (32KB) Free()

‘ 16KB ‘ 16KB ‘ 32KB ‘ ‘ 16KB ‘ 8KB ‘4KB‘4KB‘ 32KB
Alloc (4KB) Free()

‘ 16KB ‘4KB|4KB‘ 8KB ‘ 32KB ‘ ‘ 16KB ‘ 16KB ‘ 32KB
Alloc (4KB) Free()

‘ 16KB ‘4KB|4KB‘ 8KB ‘ 32KB ‘ ‘ 32KB ‘ 32KB
Alloc (4KB) Free()

‘ 16KB ‘4KB|4KB‘4KB‘4KB‘ 32KB ‘ ‘ 64 KB

_thmﬁT och CS 3204 Spring 2007 3/27/2007 19 _thmﬁT och CS 3204 Spring 2007 3/27/2007 20
Fragmentation Internal Fragmentation

‘ 64 KB
Alloc (12KB)

| e | ] 16KB ‘ 32KB
Alloc (24KB)

‘ 12KB ‘ ‘ 16KB ‘ 24KB ‘
Alloc (4KB)

‘ 12KB ‘ ‘4KB‘4KB‘ 8KB ‘ 24KB ‘
Alloc (4KB)

‘ 12KB ‘ ‘4KB‘4KB‘ 8KB ‘ 24KB ‘
Alloc (3KB)

‘ 12KB ‘ ‘4KB‘4KB ‘3KBH4KB‘ 24KB ‘

===V/irginia CS 3204 Spring 2007 3/27/2007 22

mTedl

External Fragmentation

‘ 16KB ‘4KB|4KB‘4KB‘4KB‘ 32KB
Free() No external fragmentation
‘ 16KB ‘4KB|4KB ‘4KB‘4KB‘ 32KB
Free() Have 8 KB free, but can't Alloc(8KB)
‘ 16KB ‘ 8KB ‘4KB‘4KB‘ 32KB
Free() Have 12 KB free, but can‘t Alloc(12KB)
‘ 16KB ‘ 16KB ‘ 32KB
Free() No external fragmentation
‘ 32KB ‘ 32KB
Free()
‘ 64 KB
===Virginia CS 3204 Spring 2007 3/27/2007 23

mTec_h

Virgini

Buddy Allocator & Fragmentation

* Q.: what is the average internal fragmentation
(per allocated object) for
— buddy allocator with size 2"n?

— in bitmap allocator for objects of size n*s, where each
bit represents a unit of size s?

— in first-fit allocator from project 0?

* Q.: what external fragmentation can you expect
from buddy allocator scheme?

* Q.: what's a good way to measure fragmentation
in general?

CS 3204 Spring 2007 3/27/2007 24

mTec_h




Page Size & Fragmentation

¢ How should a system'’s architect choose the
page size? — Trade-Off

* Large pages:
— Larger internal fragmentation
— (not an issue if most pages are full...)
— Page-in & write-back cost larger

* Small pages:
— Higher overhead to store page table (more entries to

maintain)

* Modern architectures provide support for “super

pages” — 2MB or 4MB

Virginia CS 3204 Spring 2007 3/27/2007 25

mTec_h




