
1

CS 3204
Operating Systems

Godmar Back

Lecture 19

3/27/2007CS 3204 Spring 2007 2

Announcements
• Midterm March 29

– See announcement + sample midterms on class 
website

• Fix remaining project 2 bugs (if any)
– Reminder: by end of semester, passing students will 

have provided a deliverable that achieves >= 90% 
test score on project 2 (or a 100% test score on 
project 3 or 4’s regression tests.) – multi-oom not part 
of these

• Project 3 Design Milestone
– Will return before midterm

Virtual Memory

Paging Techniques (cont’d)

3/27/2007CS 3204 Spring 2007 4

Demand paging

• Idea: only keep data in memory that’s being 
used
– Needed for virtualization – don’t use up physical 

memory for data processes don’t access
• Requires that actual allocation of physical page 

frames be delayed until first access
• Many variations

– Lazy loading of text & data, mmapped pages & newly 
allocated heap pages

– Copy-on-write

3/27/2007CS 3204 Spring 2007 5

ustack (1)

Lazy Loading 

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3 
G

B
1 

G
B

used

free

user (1)
user (1)

udata (1)

user (1)

Pintos loads the first process …
P1

Pintos then starts the first 
process …

Process faults because code 
page is not present …

Process faults when 
touching address in data 
segment …

stack page was allocated eagerly

data + code pages are noted
in page table, but no physical 
frame has been allocated

3/27/2007CS 3204 Spring 2007 6

ustack (2)
ustack (1)

Stack Growth 

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3 
G

B
1 

G
B

used

free

user (1)
user (1)

udata (1)

user (1)

Pintos loads the first process …
P1

Pintos then starts the first 
process …

Process faults because code 
page is not present …

Process calls recursive 
function or allocates large 
local variable

page fault at about here



2

3/27/2007CS 3204 Spring 2007 7

ustack (1)

mmap() 

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF
3 

G
B

1 
G

B

used

free

user (1)
user (1)

udata (1)

user (1)

Pintos loads the first process …
P1

Pintos then starts the first 
process …

Process faults because code 
page is not present …

Process opens file, calls
mmap(fd, addr)

ummap (1)

Process faults when 
touching mapped file

Page fault handler allocs
page, maps it, reads
data from disk:

3/27/2007CS 3204 Spring 2007 8

Lazy Loading & Prefetching
• Typically want to do some prefetching when faulting in 

page
– Reduces latency on subsequent faults

• Q.: how many pages? which pages?
– Too much: waste time & space fetching unused pages
– Too little: pay (relatively large) page fault latency too often

• Predict which pages the program will access next (how?)
• Let applications give hints to OS 

– If applications knows
– Example: madvise(2)
– Usual conflict: what’s best for application vs what’s best for 

system as a whole

3/27/2007CS 3204 Spring 2007 9

Copy-On-Write
• Sometimes, want to create a copy of a page:

– Example: Unix fork() creates copies of all parent’s pages in the 
child

• Optimization:
– Don’t copy pages, copy PTEs – now have 2 PTEs pointing to 

frame
– Set all PTEs read-only
– Read accesses succeed
– On Write access, copy the page into new frame, update PTEs to 

point to new & old frame
• Looks like each have their own copy, but postpone 

actual copying until one is writing the data
– Hope is at most one will ever touch the data – never have to 

make actual copy

3/27/2007CS 3204 Spring 2007 10

Page Eviction
• Suppose page fault occurs, but no free physical frame is there to 

allocate
• Must evict frame

– Find victim frame (how – later)
– Find & change old page table entry pointing to the victim frame
– If data in it isn’t already somewhere on disk, write to special area on 

disk (“swap space”)
– Install in new page table entry
– Resume

• Requires check on page fault if page has been swapped out – fault 
in if so

• Some subtleties with locking:
– How do you prevent a process from writing to a page some other 

process has chosen to evict from its frame?
– What do you do if a process faults on a page that another process is in 

the middle of paging out?

3/27/2007CS 3204 Spring 2007 11

Page Eviction Example

victim frame:
phys addr = …

PTE:
process id = ? (if appl.),
virtual addr = ?,
dirty bit = ?, 
accessed bit = ?,

Process A needs a frame
decides it wants this frame
Q.: how will it find the PTE,
if any, that points to it?

Linux uses a so-called “rmap” for that that links frames to PTE

3/27/2007CS 3204 Spring 2007 12

Managing Swap Space
• Continuous region on disk

– Preferably on separate disk, but typically a partition on same 
disk

• Different allocation strategies are possible
– Simplest: when page must be evicted, allocate swap space for 

page; deallocate when page is paged back in
– Or: allocate swap space upfront
– Should page’s position in swap space change? What if same 

page is paged out multiple times?
• Can be managed via bitmap 0100100000001

– Free/used bits for each page that can be stored
– Pintos: note 1 page == 8 sectors



3

3/27/2007CS 3204 Spring 2007 13

Locking Frames

• Aka “pinned” or “wired” pages or frames
• If another device outside the CPU (e.g., 

DMA by network controller) accesses a 
frame, it cannot be paged out
– Device driver must tell VM subsystem about 

this
• Also useful if you want to avoid a page 

fault while kernel code is accessing a user 
address, such as during a system call.

3/27/2007CS 3204 Spring 2007 14

Accessing User Pointers & Paging

• Kernel must check that user pointers are valid
– P2: easy, just check range & page table

• Harder when swapping: 
– validity of a pointer may change between check & 

access (if another process sneaks in and selects 
frame mapped to an already checked page for 
eviction)

• Possible solution: 
– verify & lock, 

then access, 
then unlock

if (verify_user(addr))
process_terminate();

// what if addr’s frame is just now
// swapped out by another process?
*addr = value;

Physical Memory 
Management

3/27/2007CS 3204 Spring 2007 16

Physical Memory Management

• Aka frame table management
• Task: keep efficiently track of

which physical frames are used
• Allocate a frame when paging in, 

or eager loading
• Deallocate a frame when 

process exits or when page is 
evicted (later) 0

MAX_PHYSICAL

frames

3/27/2007CS 3204 Spring 2007 17

Approach 1: Bitmaps
• Use bitmap to represent free, 

used pages
• Sometimes division in user & 

kernel pool
• Pintos (palloc.c) does that: keeps 

two bitmaps
– Kernel pool: 010010
– User pool: 0000001

• You will manage user pool only

0

MAX_PHYSICAL

frames 0100100000001

us
er

 p
oo

l
ke

rn
el

 p
oo

l

3/27/2007CS 3204 Spring 2007 18

Approach 2: Buddy Allocator
• Logically 

subdivide
memory in 
power-of-two 
blocks

• Round up on 
allocation to 
next power 
of 2

• Split block on 
allocation 
(if necessary)

• Coalesce on deallocation (if possible)
– Coalescing can be delayed

• Used in Linux: allocation requests are always multiple of pages, max 
blocksize is 4MB



4

3/27/2007CS 3204 Spring 2007 19

Buddy Example - Allocation
64 KB

16KB16KB 32KB

16KB16KB 32KB

4KB 4KB 8KB16KB 32KB

4KB 4KB 8KB16KB 32KB

4KB 4KB16KB 32KB4KB4KB

Alloc (16KB)

Alloc (32KB)

Alloc (4KB)

Alloc (4KB)

Alloc (4KB)

3/27/2007CS 3204 Spring 2007 20

Buddy Example - Deallocation

64 KB

16KB

32KB

16KB

16KB 32KB

16KB 32KB

32KB

4KB 4KB16KB 32KB4KB4KB

Free()

Free()

Free()

Free()

Free()

32KB4KB 4KB4KB4KB

8KB 4KB4KB

3/27/2007CS 3204 Spring 2007 21

Fragmentation

• Def: The inability to use memory that is 
unused.

• Internal fragmentation:
– Not all memory inside an allocated unit is 

used; rest can’t be allocated to other users
• External fragmentation:

– Impossible to satisfy allocation request even 
though total amount of memory > size 
requested

3/27/2007CS 3204 Spring 2007 22

Internal Fragmentation
64 KB

16KB12KB 32KB

16KB 24KB

4KB 4KB 8KB

4KB 4KB 8KB

4KB 4KB 4KB3KB

Alloc (12KB)

Alloc (24KB)

Alloc (4KB)

Alloc (4KB)

Alloc (3KB)

12KB

12KB

12KB

12KB

24KB

24KB

24KB

3/27/2007CS 3204 Spring 2007 23

External Fragmentation

64 KB

16KB

32KB

16KB

16KB 32KB

16KB 32KB

32KB

4KB 4KB16KB 32KB4KB4KB

Free()

Free()

Free()

Free()

Free()

32KB4KB 4KB4KB4KB

8KB 4KB4KB

Have 8 KB free, but can‘t Alloc(8KB)

Have 12 KB free, but can‘t Alloc(12KB)

No external fragmentation

No external fragmentation

3/27/2007CS 3204 Spring 2007 24

Buddy Allocator & Fragmentation

• Q.: what is the average internal fragmentation 
(per allocated object) for
– buddy allocator with size 2^n?
– in bitmap allocator for objects of size n*s, where each 

bit represents a unit of size s?
– in first-fit allocator from project 0?

• Q.: what external fragmentation can you expect 
from buddy allocator scheme?

• Q.: what’s a good way to measure fragmentation 
in general?



5

3/27/2007CS 3204 Spring 2007 25

Page Size & Fragmentation
• How should a system’s architect choose the 

page size? – Trade-Off
• Large pages:

– Larger internal fragmentation
– (not an issue if most pages are full…)
– Page-in & write-back cost larger

• Small pages:
– Higher overhead to store page table (more entries to 

maintain)
• Modern architectures provide support for “super 

pages” – 2MB or 4MB


