
1

CS 3204
Operating Systems

Godmar Back

Lecture 18

3/24/2007CS 3204 Spring 2007 2

Announcements
• Fix remaining project 2 bugs (if any)

– Reminder: by end of semester, passing students will have
provided a deliverable that achieves >= 90% test score on
project 2 (or a 100% test score on project 3 or 4’s regression
tests.) – multi-oom not part of these

• Project 3 Help Sessions
– Thursday 22nd 7-9pm McB 216
– Friday 23rd 5-7pm McB 216

• Project 3 Design Milestone
– Monday 26th 11:59pm – no extensions!

• Midterm March 29
– See announcement + sample midterms on class website

Virtual Memory

Paging Techniques

3/24/2007CS 3204 Spring 2007 4

Demand paging

• Idea: only keep data in memory that’s being
used
– Needed for virtualization – don’t use up physical

memory for data processes don’t access
• Requires that actual allocation of physical page

frames be delayed until first access
• Many variations

– Lazy loading of text & data, mmapped pages & newly
allocated heap pages

– Copy-on-write

3/24/2007CS 3204 Spring 2007 5

ustack (1)

Lazy Loading

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

free

user (1)
user (1)

udata (1)

user (1)

Pintos loads the first process …
P1

Pintos then starts the first
process …

Process faults because code
page is not present …

Process faults when
touching address in data
segment …

stack page was allocated eagerly

data + code pages are noted
in page table, but no physical
frame has been allocated

3/24/2007CS 3204 Spring 2007 6

ustack (2)
ustack (1)

Stack Growth

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

free

user (1)
user (1)

udata (1)

user (1)

Pintos loads the first process …
P1

Pintos then starts the first
process …

Process faults because code
page is not present …

Process calls recursive
function or allocates large
local variable

page fault at about here

2

3/24/2007CS 3204 Spring 2007 7

Microscopic View of Stack Growth
push $ebp
sub $20, $esp
push $eax
push $ebx

push $ebp
sub $20, $esp
push $eax
push $ebx

0x8000
esp = 0x8004
esp = 0x8000

esp = 0x7FEC
esp = 0x7FE8

intr0e_stub:
…
call page_fault()
…
iret

intr0e_stub:
…
call page_fault()
…
iret

Page Fault!

void page_fault() {
get fault addr
determine if it’s close to user $esp
Yes: allocate page frame

install page in page table
No: terminate process

}

esp = 0x7FE4

• Can resume after page fault (and unless f→eip
is changed) this will retry the faulting instruction
(here: push $eax)
– MMU will walk hardware page table again

3/24/2007CS 3204 Spring 2007 8

Fault Resumption
• Requires that faulting CPU instruction be restartable

– Most CPUs are designed this way
• Very powerful technique

– Entirely transparent to user program: user program is frozen in
time until OS decides what to do

• Can be used to emulate lots of things
– Programs that just ignore segmentation violations (!?) (here:

resume with next instruction – retrying would fault again)
– Subpage protection (protect entire page, take fault on access,

check if address was to an valid subpage region)
– Virtual machines (vmware, qemu – run entire OS on top of

another OS)
– Garbage collection
– Distributed Shared Memory

3/24/2007CS 3204 Spring 2007 9

Distributed Shared Memory
• Idea: allows accessing other machine’s memory as if it

were local
• Augment page table to be able to keep track of network

locations:
– local virtual address → (remote machine, remote address)

• On page fault, send request for data to owning machine,
receive data, allocate & write to local page, map local
page, and resume
– Process will be able to just use pointers to access all memory

distributed across machines – fully transparent
• Q.: how do you guarantee consistency?

– Lots of options

3/24/2007CS 3204 Spring 2007 10

ustack (1)

Heap Growth

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

free

user (1)
user (1)

udata (1)

user (1)

Pintos loads the first process …
P1

Pintos then starts the first
process …

Process faults because code
page is not present …

Process needs memory to
place malloc() objects in

Process calls sbrk(addr)udata (2)

Process faults when
touching new memory

3/24/2007CS 3204 Spring 2007 11

ustack (1)

mmap()

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

free

user (1)
user (1)

udata (1)

user (1)

Pintos loads the first process …
P1

Pintos then starts the first
process …

Process faults because code
page is not present …

Process opens file, calls
mmap(fd, addr)

ummap (1)

Process faults when
touching mapped file

Page fault handler allocs
page, maps it, reads
data from disk:

