
1

CS 3204
Operating Systems

Godmar Back

Lecture 16

3/19/2007CS 3204 Spring 2007 2

Announcements

• Project 2 due March 20
• Additional office hours

– Jai: Friday from 11am – 1pm and Monday
from 12 – 2.

– Xiaomo: Thursday (today) 1:30 -3:30pm and
Tuesday 1:00 - 3:00pm

• Midterm March 29

Scheduling

3/19/2007CS 3204 Spring 2007 4

CPU Scheduling Terminology
• A job (sometimes called a task, or a job instance)

– Activity that’s scheduled: process or part of a process
• Arrival time: time when job arrives
• Start time: time when job actually starts
• Finish time: time when job is done
• Completion time (aka Turn-around time)

– Finish time – Arrival time
• Response time

– Time when user sees response – Arrival time
• Execution time (aka cost): time a job needs to execute

CPUI/OCPU burstwaiting waiting

Arrival Time Start Time Finish Time

Completion TimeResponse Time

3/19/2007CS 3204 Spring 2007 5

Basic Scheduling: Summary
• FCFS: simple

– unfair to short jobs & poor I/O performance (convoy effect)
• RR: helps short jobs

– loses when jobs are equal length
• SPN: optimal average waiting time

– which, if ignoring blocking time, leads to optimal average
completion time

– unfair to long jobs
– requires knowing (or guessing) the future

• MLFQS: approximates SPN without knowing execution
time
– Can still be unfair to long jobs

3/19/2007CS 3204 Spring 2007 6

Case Study: Linux Scheduler

• Variant of MLFQS
• 140 priorities

– 0-99 “realtime”
– 100-140 nonrealtime

• Dynamic priority
computed from static
priority (nice) plus
“interactivity bonus”

0

100

120

140

“Realtime”
processes
scheduled
based on
static priority
SCHED_FIFO
SCHED_RR

Processes
scheduled
based on
dynamic
priority
SCHED_OTHER

nice=0

nice=19

nice=-20

2

3/19/2007CS 3204 Spring 2007 7

Linux Scheduler (2)

• Instead of recomputation loop, recompute
priority at end of each timeslice
– dyn_prio = nice + interactivity bonus (-5…5)

• Interactivity bonus depends on sleep_avg
– measures time a process was blocked

• 2 priority arrays (“active” & “expired”) in
each runqueue (Linux calls ready queues
“runqueue”)

3/19/2007CS 3204 Spring 2007 8

Linux Scheduler (3)
struct prio_array {

unsigned int nr_active;
unsigned long bitmap[BITMAP_SIZE];
struct list_head queue[MAX_PRIO];

};
typedef struct prio_array prio_array_t;

/* find the highest-priority ready thread */
idx = sched_find_first_bit(array->bitmap);
queue = array->queue + idx;
next = list_entry(queue->next, task_t, run_list);

struct prio_array {
unsigned int nr_active;
unsigned long bitmap[BITMAP_SIZE];
struct list_head queue[MAX_PRIO];

};
typedef struct prio_array prio_array_t;

/* find the highest-priority ready thread */
idx = sched_find_first_bit(array->bitmap);
queue = array->queue + idx;
next = list_entry(queue->next, task_t, run_list);

/* Per CPU runqueue */
struct runqueue {
prio_array_t *active;
prio_array_t *expired;
prio_array_t arrays[2];
…
}

/* Per CPU runqueue */
struct runqueue {
prio_array_t *active;
prio_array_t *expired;
prio_array_t arrays[2];
…
}

• Finds highest-priority ready thread quickly
• Switching active & expired arrays at end of epoch is

simple pointer swap (“O(1)” claim)

3/19/2007CS 3204 Spring 2007 9

Linux Timeslice Computation

• Linux scales static priority to timeslice
– Nice [-20 … 0 … 19] maps to

[800ms … 100 ms … 5ms]
• Various tweaks:

– “interactive processes” are reinserted into
active array even after timeslice expires

• Unless processes in expired array are starving
– processes with long timeslices are round-

robin’d with other of equal priority at sub-
timeslice granularity

3/19/2007CS 3204 Spring 2007 10

Linux SMP Load Balancing
• Runqueue is per CPU
• Periodically, lengths of

runqueues on different
CPU is compared
– Processes are migrated to

balance load
• Migrating requires locks

on both runqueues

static void double_rq_lock(
runqueue_t *rq1,
runqueue_t *rq2)

{
if (rq1 == rq2) {

spin_lock(&rq1->lock);
} else {

if (rq1 < rq2) {
spin_lock(&rq1->lock);
spin_lock(&rq2->lock);

} else {
spin_lock(&rq2->lock);
spin_lock(&rq1->lock);

}
}

}

static void double_rq_lock(
runqueue_t *rq1,
runqueue_t *rq2)

{
if (rq1 == rq2) {

spin_lock(&rq1->lock);
} else {

if (rq1 < rq2) {
spin_lock(&rq1->lock);
spin_lock(&rq2->lock);

} else {
spin_lock(&rq2->lock);
spin_lock(&rq1->lock);

}
}

}

3/19/2007CS 3204 Spring 2007 11

Proportional Share Scheduling
• Aka “Fair-Share” Scheduling
• None of algorithms discussed so far give direct

way of assigning CPU shares
– E.g., give 30% of CPU to process A, 70% to process

B
• Proportional Share algorithms assign “tickets” or

“shares” to processes
– Process get to use resource in proportion of their

shares to total number of shares
• Lottery Scheduling, Stride Scheduling

[Waldspurger 1995]
3/19/2007CS 3204 Spring 2007 12

Lottery Scheduling

• Idea: number tickets between 1…N
– every process gets pi tickets according to

importance
– process 1 gets tickets [1… p1-1]
– process 2 gets tickets [p1… p1+p2-1] and so

on.
• Scheduling decision:

– Hold a lottery and draw ticket, holder gets to
run for next timeslice

• Nondeterministic algorithm
Q h t’ th l it f thi

3

3/19/2007CS 3204 Spring 2007 13

Scheduling Summary

• OS must schedule all resources in a system
– CPU, Disk, Network, etc.

• CPU Scheduling affects indirectly scheduling of
other devices

• Goals:
– Minimizing latency
– Maximing throughput
– Provide fairness

• In Practice: some theory, lots of tweaking

3/19/2007CS 3204 Spring 2007 14

3/19/2007CS 3204 Spring 2007 15

Goals for Virtual Memory

• Virtualization
– Maintain illusion that each process has entire

memory to itself
– Allow processes access to more memory than

is really in the machine (or: sum of all memory
used by all processes > physical memory)

• Protection
– make sure there’s no way for one process to

access another process’s data
3/19/2007CS 3204 Spring 2007 16

Context Switching

Process 1

Process 2

Kernel

user mode

kernel mode

P1 starts P2 starts P1 exits P1 exits

3/19/2007CS 3204 Spring 2007 17

ustack (1)

Process 1 Active
in user mode

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

free

user (1)
user (1)

udata (1)

user (1)
user (2)
user (2)
user (2)

access possible in user mode

P1

3/19/2007CS 3204 Spring 2007 18

ustack (1)

Process 1 Active
in kernel mode

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

free

user (1)
user (1)

udata (1)

user (1)
user (2)
user (2)
user (2)

access possible in user mode

access requires kernel mode

P1

4

3/19/2007CS 3204 Spring 2007 19

ustack (2)

Process 2 Active
in kernel mode

kernel
kernel
kernel
kernel

user (1)
user (1)
user (1)

ucode (2)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF
3

G
B

1
G

B

used

freeuser (2)
user (2)

udata (2)

user (2)

access possible in user mode

access requires kernel mode

P2

3/19/2007CS 3204 Spring 2007 20

ustack (2)

Process 2 Active
in user mode

kernel
kernel
kernel
kernel

user (1)
user (1)
user (1)

ucode (2)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

freeuser (2)
user (2)

udata (2)

user (2)

access possible in user mode

P2

3/19/2007CS 3204 Spring 2007 21

Page Tables
• How are the arrows in previous pictures

represented?
– Page Table: mathematical function “Trans”

• Typically have
– Trans(pi, va, user, *) = Trans(pi, va, kernel, *)

OR
Trans(pi, va, user, *) = INVALID

– User virtual addresses can be accessed in kernel
mode

Trans:
{ Process Ids } × { Virtual Addresses } × { user, kernel } × ℘({ read, write, execute })

→ { Physical Addresses } ∪ { INVALID }

Trans:
{ Process Ids } × { Virtual Addresses } × { user, kernel } × ℘({ read, write, execute })

→ { Physical Addresses } ∪ { INVALID }

3/19/2007CS 3204 Spring 2007 22

Sharing Variations
• We get user-level sharing between processes p1 and p2 if

– Trans(p1, va, user, *) = Trans(p2, va, user, *)
• Shared physical address doesn’t need to be mapped at

same virtual address, could be mapped at va in p1 and vb in
p2:
– Trans(p1, va, user, *) = Trans(p2, vb, user, *)

• Can also map with different permissions: say p1 can read &
write, p2 can only read
– Trans(p1, va, user, {read, write}) = Trans(p2, vb, user, {read})

• In Pintos (and many OS) the kernel virtual address space
is shared among all processes & mapped at the same
address:
– Trans(pi, va, kernel, *) = Trans(pk, va, kernel, *) for all processes pi

and pk and va in [0xC0000000, 0xFFFFFFFF]

3/19/2007CS 3204 Spring 2007 23

Per-Process Page Tables

• Can either keep track of all mappings in a single
table, or can split information between tables
– one for each process
– mathematically: a projection onto a single process

• For each process pi define a function PTransi as
– PTransi (va, *, *) = Trans(pi, va, user, *)

• Implementation: associate representation of this
function with PCB, e.g. per-process hash table
– Entries are called “page table entries” or PTEs

3/19/2007CS 3204 Spring 2007 24

Per-Process Page Tables (2)

• Common misconception
– “User processes use ‘user page table’ and kernel

uses ‘kernel page table’” – as if those were two tables
• Not so: mode switch (interrupt, system call) does

not change the page table that is used
– It only activates those entries that require kernel

mode within the current process’s page table
• Consequence: kernel code also cannot access

user addresses that aren’t mapped

5

3/19/2007CS 3204 Spring 2007 25

Non-Resident Pages

• When implementing virtual memory, some
of a process’s pages can be swapped out
– Or may not yet have been faulted in

• Need to record that in page table:

Trans (with paging):
{ Process Ids } × { Virtual Addresses } × { user, kernel } × ℘({ read, write, execute })

→ { Physical Addresses } ∪ { INVALID } ∪ { Some Location On Disk }

Trans (with paging):
{ Process Ids } × { Virtual Addresses } × { user, kernel } × ℘({ read, write, execute })

→ { Physical Addresses } ∪ { INVALID } ∪ { Some Location On Disk }

