CS 3204
Operating Systems

Lecture 13
Godmar Back

Virgini

mTec_h

Announcements

* Project 2 due March 20

* Regroup if necessary
— Read post on how to move CVS forward

« Won't give detailed milestones this time,
but:

—recommend that you reach the point where
“write” works (see 3.2 Suggested Order of
Implementation) by March 1

Virginia CS 3204 Spring 2007 3/1/2007 2

mTec_h

Optimistic Concurrency
Control

_vug] nia

mTﬁ;h

Optimistic Concurrency Control

« Alternative to locks: instead of serializing
access, detect when bad interleaving occurred,
retry if so

void increment_counter(int *counter) {

do{
int oldvalue = *counter;
int newvalue = oldvalue + 1;
[BEGIN ATOMIC COMPARE-AND-SWAP INSTRUCTION]
if (*counter == oldvalue) { *counter = newvalue; success = true; }
else { success = false; }
[END CAS]

} while (Isuccess);

}

Virginia CS 3204 Spring 2007 3/1/2007 4

mTﬁ;h

Optimistic Concurrency Control (2)

» Other names:
— lock-free synchronization
— wait-free synchronization
— non-blocking synchronization
» x86 supports this via cmpxchg instruction
« Advantages:
— Less overhead for uncontended locks (faster, and need no
storage for lock queue)
— Synchronizes with IRQ handler automatically
— Easier to clean up when killing a thread
« Disadvantages
— Can requires lots of retries (more inefficient that even a hot lock
since no thread might make progress)

Virginia CS 3204 Spring 2007 3112007 5

mTec_h

Deadlock

Virgini

mTec_h

Deadlock (Definition)

A situation in which two
or more threads or

processes are blocked 2!
and cannot proceed ‘265

» “blocked” either on a f;'m o
resource request that TTEE BT

can’t be granted, or !
waiting for an event that if
won’t occur e

— Possible causes: resource-
related or communication- LL
related

» Cannot easily back out

adiock

v“gmm‘a.r och CS 3204 Spring 2007 31112007 7

Deadlock Canonical Example (1)

pthread_mutex_t A;
pthread_mutex_t B;

pthread_mutex_lock(&A);
pthread_mutex_lock(&B);

pthread_mutex_lock(&B);
pthread_mutex_lock(&A);

pthread_mutex_unlock(&A);
pthread_mutex_unlock(&B);

pthread_mutex_unlock(&B);
pthread_mutex_unlock(&A);

Thread 1 Thread 2

v“gmm‘a.r och CS 3204 Spring 2007 3/1/2007 8

account acc1(10000, "acc1");

Canonical Example (2) account acc2(10000, "acc2");
/I Thread 1:

class account {
pthread_mutex_t lock;
int amount; const char *name;
public:
account(int amount, const char *name) :

for (inti = 0; i < 100000; i++)
acc2.transferTo(&acc1, 20);

/I Thread 2:

for (inti = 0; i< 100000; i++)
acc1.transferTo(&acc2, 20);

amount(amount), name(name) { pthread_mutex_init(&this->lock, NULL); |
void transferTo(account *that, int amount) {
pthread_mutex_lock(&this->lock);
pthread_mutex_lock(&that->lock);
cout << "Transfering $" << amount << " from "
<< this->name << " to " << that->name << end|;

this->amount -= amount;
that->amount += amount;
pthread_mutex_unlock(&that->lock);

q ixX?
pthread_mutex_unlock(&this->lock); Q How to fix?

}
I

c@mm Tech CS 3204 Spring 2007 3/1/2007 9

Canonical Example (2, cont’d)

* Answer: acquire locks in same order

void transferTo(account *that, int amount) {
if (this < that) {
pthread_mutex_lock(&this->lock);
pthread_mutex_lock(&that->lock);
}else{
pthread_mutex_lock(&that->lock);
pthread_mutex_lock(&this->lock);

/* rest of function */

}

V“EmmlaT wch CS 3204 Spring 2007 3/1/2007 10

Reusable vs. Consumable Resources

« Distinguish two types of resources when discussing
deadlock

« Aresource:
— “anything a process needs to make progress”

» (Serially) Reusable resources (static, concrete, finite)
— CPU, memory, locks

— Can be a single unit (CPU on uniprocessor, lock), or multiple
units (e.g. memory, semaphore initialized with N)

« Consumable resources (dynamic, abstract, infinite)
— Can be created & consumed: messages, signals

« Deadlock may involve reusable resources or
consumable resources

V“Emm‘a Tech CS 3204 Spring 2007 3112007 1

Consumable Resources & Deadlock

void client() {
for (i=0;i<10;i++)

void server() {
while (true) {

send(request[i]); receive(request);
for (i=0;i<10;i++) { process(request);
receive (reply[i]); send(reply);
send(ack); receive(ack);
}

}
} }
» Assume client & server communicate using 2 bounded
buffers (one for each direction)
— Real-life example: flow-controlled TCP
* Q.: Under what circumstances does this code deadlock?

V“Emm‘a.r och CS 3204 Spring 2007 3/1/2007 12

Deadlocks, more formally

* 4 necessary conditions
1) Exclusive Access
2) Hold and Wait
3) No Preemption
4) Circular Wait
+ Wil look at strategies to .
Resource Allocation Graph

— Prevent R — P Assignment
P — R Request

— Avoid
— Detect & break deadlocks
===Virginia CS 3204 Spring 2007 31112007 13

mTec_h

Deadlock Detection

+ ldea: Look for circularity in resource allocation graph
— Q.: How do you find out if a directed graph has a cycle?

» Can be done eagerly
— on every resourcedacquisition/release, resource allocation graph

is updated & teste
« orlazily

— when all threads are blocked & deadlock is suspected, build

graph & test

» Windows provides this for its mutexes as an option

» Note: all processes in BLOCKED state is not sufficient to
conclude existence of deadlock. (Why?)

» Note: circularity test is only sufficient criteria if there’s
only a single instance of each resource — see next slide
for multi-unit resources

Virgini

mTec_h

CS 3204 Spring 2007

3/1/2007 14

Multi-Unit Resources

R, R; ®

» »
() (=) (3T
Resource Allocation Graph / /

R — P Assignment R ‘ R4/
(4

* Note: Cycle, but no deadlock!

Virginia CS 3204 Spring 2007 3/1/2007 15

2

Resource Unit

P — R Request
mTedl

cycle

may or may not

_vug] nia

mTﬁ;h

» For reusable resources
— If each resource has exactly one unit, deadlock iff

CS 3204 Spring 2007

Deadlock Detection

— If each resource has multiple units, existence of cycle

mean deadlock

* Must use reduction algorithm to determine if deadlock exists
(Intuition: remove processes that don’t have request edges,
return their resource units and remove assignment edges,
assign resources to remove request edges, repeat until out of
processes without request edges. — If entire graph reduces to
empty graph, no deadlock.)

» For consumable resources
— analog algorithm possible
* Q.: What to do once deadlock is detected?

3/1/2007 16

Deadlock Recovery

» Preempt resources (if possible)

» Back processes up to a checkpoint

— Requires checkpointing or transactions
(typically expensive)

Kill processes involved until deadlock

Increasing Severity
[]

is resolved e
« Kill all processes
involved
* Reboot
===Virginia CS 3204 Spring 2007 3112007 17

mTec_h

» Consider:

« Extremely difficult issue:
— When is it safe to kill a thread?

What if

thread_func()

while (Idone) {
lock_acquire(&lock);
/I access shared state
lock_release(&lock);

}
}

thread is
killed
there?

CS 3204 Spring 2007

Killing Threads or Processes

thread_func()

while (!done) {
lock_acquire(&lock);
p = queue.get();

2 queue.put(p);
lock_release(&lock);

}

}

« Must guarantee full resource reclamation & consistency
of all surviving system data structures

3/1/2007 18

L

Deadlock Prevention (1)

+ Idea: remove one of the necessary conditions!
* (C1) (Don’t require) Exclusive Access
— Duplicate resource or make it shareable (where
possible)
* (C2) (Avoid) Hold and Wait
— a) Request all resources at once
* hard to know in modular system
— b) Drop all resources if additional request cannot be
immediately granted — retry later
« requires “try_lock” facility
« can be inefficient if lots of retries

v“@-nm‘a.r och CS 3204 Spring 2007 31112007 19

Deadlock Prevention (2)
* (C3) (Allow) Preemption

— Take resource away from process
« Difficult: how should process react?

— Virtualize resource so it can be taken away
* Requires saving & restoring resource’s state

* (C4) (Avoid) Circular Wait

— Use partial ordering

» Requires mapping to domain that provides an
ordering function (addresses often work!)

v“@ﬂm‘a.r och CS 3204 Spring 2007 3/1/2007 20

Deadlock Avoidance

« Don’t grant resource request if deadlock could occur in
future

— Or don’t admit process at all
Banker’s Algorithm (Dijkstra 1965, see book)
— Avoids “unsafe” states that might lead to deadlock

— Need to know what future resource demands are (“credit lines” of
all customers)

— Need to capture all dependencies (no additional synchronization
requirements — “loans” can be called back if needed)

* Mainly theoretical
— Impractical assumptions
— Tends to be overly conservative — inefficient use of resources

Deadlock in the Real World

» Most common strategy of handling deadlock
— Test: fix all deadlocks detected during testing

— Deploy: if deadlock happens, kill and rerun (easy!)

« If it happens too often, or reproducibly, add deadlock
detection code (see next slide for how to do that in Pintos)

» Weigh cost of preventing vs cost of (re-)
occurring

« Static analysis tools detects some kinds of
deadlocks before they occur
— Example: Microsoft Driver Verifier

— Idea: monitor order in which locks are taken, flag if
not consistent lock order

— 4 necessary conditions: mutual exclusion,

hold-and-wait, no preemption, circular wait
+ Strategies to deal with:

— Detect & recover

— Prevention: remove one of 4 necessary
conditions

— Avoidance: if you can’t do that, avoid
deadlock by being conservative

V“Emm‘a Tech CS 3204 Spring 2007 3112007 23

vuglnmlaTed] CS 3204 Spring 2007 3/1/2007 21 vuglnmlaTed] CS 3204 Spring 2007 3/1/2007 22
Summary
» Deadlock:

