
1

CS 3204
Operating Systems

Godmar Back

Lecture 13

3/1/2007CS 3204 Spring 2007 2

Announcements

• Project 2 due March 20
• Regroup if necessary

– Read post on how to move CVS forward
• Won’t give detailed milestones this time,

but:
– recommend that you reach the point where

“write” works (see 3.2 Suggested Order of
Implementation) by March 1

Optimistic Concurrency
Control

3/1/2007CS 3204 Spring 2007 4

Optimistic Concurrency Control
• Alternative to locks: instead of serializing

access, detect when bad interleaving occurred,
retry if so
void increment_counter(int *counter) {

do {
int oldvalue = *counter;
int newvalue = oldvalue + 1;
[BEGIN ATOMIC COMPARE-AND-SWAP INSTRUCTION]
if (*counter == oldvalue) { *counter = newvalue; success = true; }
else { success = false; }
[END CAS]

} while (!success);
}

void increment_counter(int *counter) {
do {

int oldvalue = *counter;
int newvalue = oldvalue + 1;
[BEGIN ATOMIC COMPARE-AND-SWAP INSTRUCTION]
if (*counter == oldvalue) { *counter = newvalue; success = true; }
else { success = false; }
[END CAS]

} while (!success);
}

3/1/2007CS 3204 Spring 2007 5

Optimistic Concurrency Control (2)

• Other names:
– lock-free synchronization
– wait-free synchronization
– non-blocking synchronization

• x86 supports this via cmpxchg instruction
• Advantages:

– Less overhead for uncontended locks (faster, and need no
storage for lock queue)

– Synchronizes with IRQ handler automatically
– Easier to clean up when killing a thread

• Disadvantages
– Can requires lots of retries (more inefficient that even a hot lock

since no thread might make progress)

Deadlock

2

3/1/2007CS 3204 Spring 2007 7

Deadlock (Definition)
• A situation in which two

or more threads or
processes are blocked
and cannot proceed

• “blocked” either on a
resource request that
can’t be granted, or
waiting for an event that
won’t occur
– Possible causes: resource-

related or communication-
related

• Cannot easily back out

3/1/2007CS 3204 Spring 2007 8

Deadlock Canonical Example (1)

A B
Thread 1 Thread 2

pthread_mutex_t A;
pthread_mutex_t B;
…
pthread_mutex_lock(&A);
pthread_mutex_lock(&B);
…
pthread_mutex_unlock(&B);
pthread_mutex_unlock(&A);

pthread_mutex_t A;
pthread_mutex_t B;
…
pthread_mutex_lock(&A);
pthread_mutex_lock(&B);
…
pthread_mutex_unlock(&B);
pthread_mutex_unlock(&A);

pthread_mutex_lock(&B);
pthread_mutex_lock(&A);
…
pthread_mutex_unlock(&A);
pthread_mutex_unlock(&B);

pthread_mutex_lock(&B);
pthread_mutex_lock(&A);
…
pthread_mutex_unlock(&A);
pthread_mutex_unlock(&B);

3/1/2007CS 3204 Spring 2007 9

Canonical Example (2)
class account {
pthread_mutex_t lock;
int amount; const char *name;

public:
account(int amount, const char *name) :

amount(amount), name(name) { pthread_mutex_init(&this->lock, NULL); }
void transferTo(account *that, int amount) {
pthread_mutex_lock(&this->lock);
pthread_mutex_lock(&that->lock);
cout << "Transfering $" << amount << " from "

<< this->name << " to " << that->name << endl;
this->amount -= amount;
that->amount += amount;
pthread_mutex_unlock(&that->lock);
pthread_mutex_unlock(&this->lock);

}
};

class account {
pthread_mutex_t lock;
int amount; const char *name;

public:
account(int amount, const char *name) :

amount(amount), name(name) { pthread_mutex_init(&this->lock, NULL); }
void transferTo(account *that, int amount) {
pthread_mutex_lock(&this->lock);
pthread_mutex_lock(&that->lock);
cout << "Transfering $" << amount << " from "

<< this->name << " to " << that->name << endl;
this->amount -= amount;
that->amount += amount;
pthread_mutex_unlock(&that->lock);
pthread_mutex_unlock(&this->lock);

}
};

account acc1(10000, "acc1");
account acc2(10000, "acc2");

// Thread 1:
for (int i = 0; i < 100000; i++)

acc2.transferTo(&acc1, 20);
// Thread 2:
for (int i = 0; i < 100000; i++)

acc1.transferTo(&acc2, 20);

account acc1(10000, "acc1");
account acc2(10000, "acc2");

// Thread 1:
for (int i = 0; i < 100000; i++)

acc2.transferTo(&acc1, 20);
// Thread 2:
for (int i = 0; i < 100000; i++)

acc1.transferTo(&acc2, 20);

Q.: How to fix?

3/1/2007CS 3204 Spring 2007 10

Canonical Example (2, cont’d)

• Answer: acquire locks in same order
void transferTo(account *that, int amount) {
if (this < that) {

pthread_mutex_lock(&this->lock);
pthread_mutex_lock(&that->lock);

} else {
pthread_mutex_lock(&that->lock);
pthread_mutex_lock(&this->lock);

}
/* rest of function */

}

void transferTo(account *that, int amount) {
if (this < that) {

pthread_mutex_lock(&this->lock);
pthread_mutex_lock(&that->lock);

} else {
pthread_mutex_lock(&that->lock);
pthread_mutex_lock(&this->lock);

}
/* rest of function */

}

3/1/2007CS 3204 Spring 2007 11

Reusable vs. Consumable Resources

• Distinguish two types of resources when discussing
deadlock

• A resource:
– “anything a process needs to make progress”

• (Serially) Reusable resources (static, concrete, finite)
– CPU, memory, locks
– Can be a single unit (CPU on uniprocessor, lock), or multiple

units (e.g. memory, semaphore initialized with N)
• Consumable resources (dynamic, abstract, infinite)

– Can be created & consumed: messages, signals
• Deadlock may involve reusable resources or

consumable resources

3/1/2007CS 3204 Spring 2007 12

Consumable Resources & Deadlock

• Assume client & server communicate using 2 bounded
buffers (one for each direction)
– Real-life example: flow-controlled TCP

• Q.: Under what circumstances does this code deadlock?

void client() {
for (i = 0; i < 10; i++)
send(request[i]);

for (i = 0; i < 10; i++) {
receive (reply[i]);
send(ack);

}
}

void client() {
for (i = 0; i < 10; i++)
send(request[i]);

for (i = 0; i < 10; i++) {
receive (reply[i]);
send(ack);

}
}

void server() {
while (true) {
receive(request);
process(request);
send(reply);
receive(ack);

}
}

void server() {
while (true) {
receive(request);
process(request);
send(reply);
receive(ack);

}
}

3

3/1/2007CS 3204 Spring 2007 13

Deadlocks, more formally

• 4 necessary conditions
1) Exclusive Access
2) Hold and Wait
3) No Preemption
4) Circular Wait

• Will look at strategies to
– Prevent
– Avoid
– Detect & break deadlocks

Resource Allocation Graph
R → P Assignment
P → R Request

Resource Allocation Graph
R → P Assignment
P → R Request

R1

P1 P2 P3 P4

R2

R3

R4

3/1/2007CS 3204 Spring 2007 14

Deadlock Detection
• Idea: Look for circularity in resource allocation graph

– Q.: How do you find out if a directed graph has a cycle?
• Can be done eagerly

– on every resource acquisition/release, resource allocation graph
is updated & tested

• or lazily
– when all threads are blocked & deadlock is suspected, build

graph & test
• Windows provides this for its mutexes as an option
• Note: all processes in BLOCKED state is not sufficient to

conclude existence of deadlock. (Why?)
• Note: circularity test is only sufficient criteria if there’s

only a single instance of each resource – see next slide
for multi-unit resources

3/1/2007CS 3204 Spring 2007 15

Multi-Unit Resources

• Note: Cycle, but no deadlock!

Resource Allocation Graph
R → P Assignment
P → R Request

Resource Unit

Resource Allocation Graph
R → P Assignment
P → R Request

Resource Unit

R1

P1 P3 P4

R2

R3

R4

P2

3/1/2007CS 3204 Spring 2007 16

Deadlock Detection
• For reusable resources

– If each resource has exactly one unit, deadlock iff
cycle

– If each resource has multiple units, existence of cycle
may or may not mean deadlock

• Must use reduction algorithm to determine if deadlock exists
(Intuition: remove processes that don’t have request edges,
return their resource units and remove assignment edges,
assign resources to remove request edges, repeat until out of
processes without request edges. – If entire graph reduces to
empty graph, no deadlock.)

• For consumable resources
– analog algorithm possible

• Q.: What to do once deadlock is detected?

3/1/2007CS 3204 Spring 2007 17

Deadlock Recovery

• Preempt resources (if possible)
• Back processes up to a checkpoint

– Requires checkpointing or transactions
(typically expensive)

• Kill processes involved until deadlock
is resolved

• Kill all processes
involved

• Reboot

In
cr

ea
si

ng
 S

ev
er

ity

3/1/2007CS 3204 Spring 2007 18

Killing Threads or Processes
• Extremely difficult issue:

– When is it safe to kill a thread?
• Consider:

thread_func()
{
while (!done) {

lock_acquire(&lock);
// access shared state
lock_release(&lock);

}
}

thread_func()
{
while (!done) {

lock_acquire(&lock);
// access shared state
lock_release(&lock);

}
}

thread_func()
{
while (!done) {

lock_acquire(&lock);
p = queue.get();
queue.put(p);
lock_release(&lock);

}
}

thread_func()
{
while (!done) {

lock_acquire(&lock);
p = queue.get();
queue.put(p);
lock_release(&lock);

}
}

What if
thread is

killed
there?

• Must guarantee full resource reclamation & consistency
of all surviving system data structures

4

3/1/2007CS 3204 Spring 2007 19

Deadlock Prevention (1)
• Idea: remove one of the necessary conditions!
• (C1) (Don’t require) Exclusive Access

– Duplicate resource or make it shareable (where
possible)

• (C2) (Avoid) Hold and Wait
– a) Request all resources at once

• hard to know in modular system
– b) Drop all resources if additional request cannot be

immediately granted – retry later
• requires “try_lock” facility
• can be inefficient if lots of retries

3/1/2007CS 3204 Spring 2007 20

Deadlock Prevention (2)
• (C3) (Allow) Preemption

– Take resource away from process
• Difficult: how should process react?

– Virtualize resource so it can be taken away
• Requires saving & restoring resource’s state

• (C4) (Avoid) Circular Wait
– Use partial ordering

• Requires mapping to domain that provides an
ordering function (addresses often work!)

3/1/2007CS 3204 Spring 2007 21

Deadlock Avoidance
• Don’t grant resource request if deadlock could occur in

future
– Or don’t admit process at all

• Banker’s Algorithm (Dijkstra 1965, see book)
– Avoids “unsafe” states that might lead to deadlock
– Need to know what future resource demands are (“credit lines” of

all customers)
– Need to capture all dependencies (no additional synchronization

requirements – “loans” can be called back if needed)
• Mainly theoretical

– Impractical assumptions
– Tends to be overly conservative – inefficient use of resources

3/1/2007CS 3204 Spring 2007 22

Deadlock in the Real World
• Most common strategy of handling deadlock

– Test: fix all deadlocks detected during testing
– Deploy: if deadlock happens, kill and rerun (easy!)

• If it happens too often, or reproducibly, add deadlock
detection code (see next slide for how to do that in Pintos)

• Weigh cost of preventing vs cost of (re-)
occurring

• Static analysis tools detects some kinds of
deadlocks before they occur
– Example: Microsoft Driver Verifier
– Idea: monitor order in which locks are taken, flag if

not consistent lock order

3/1/2007CS 3204 Spring 2007 23

Summary

• Deadlock:
– 4 necessary conditions: mutual exclusion,

hold-and-wait, no preemption, circular wait
• Strategies to deal with:

– Detect & recover
– Prevention: remove one of 4 necessary

conditions
– Avoidance: if you can’t do that, avoid

deadlock by being conservative

