CS 3204
Operating Systems

Lecture 10
Godmar Back

Virgini

mTec_h

Announcements

* Project 1 Feb 20 (Tuesday) 11:59pm
— Additional office hours: Xiaomo Th 4-6pm, Jai
Fr 10am-12pm, Mo 12pm-2pm
 Project 0 graded, has it been handed back
already?
— If not, will be later today
— Read feedback before submitting project 1

v“gmm‘a.r l CS 3204 Spring 2007 2/20/2007 2

Concurrency & Synchronization

continued

How many locks should | use?

 Could use one lock for all shared variables
— Disadvantage: if a thread holding the lock blocks, no
other thread can access any shared variable, even
unrelated ones
— Sometimes used when retrofitting non-threaded code
into threaded framework
— Examples:
« “BKL" Big Kernel Lock in Linux
« fslock in Pintos Project 2
* |deally, want fine-grained locking

— One lock only protects one (or a small set of)
variables — how to pick that set?

static struct If Correct, but not necessarily better!

static struct Ij ON Uniprocessor:

i No throughput from fine-grained locking, since no

static struct I plocking inside critical sections — but pay twice the price
static struct I4 compared to one-lock solution

On multiprocessor:

Gain from being able to manipulate free & used

lists in parallel, but increased risk of contended locks

void *mem_alloc(...)

block *b;

lock_acquire(&freelock);

b = alloc_block_from_freelist();
lock_release(&freelock);
lock_acquire(&usedlock);
insert_into_usedlist(&usedlist, b);
lock_release(&usedlock);

return b->data;

} }

lock_acquire(&usedlock);
list_remove(&b->elem);
lock_release(&usedlock);
lock_acquire(&freelock);
coalesce_into_freelist(&freelist, b);
lock_release(&freelock);

Virgini

mTec_h

CS 3204 Spring 2007 2/20/2007 5

_V“Emﬁ.r beh _V“Emﬁ.r wch CS 3204 Spring 2007 2/20/2007 4
Multiple locks, correct (2) Conclusion

* Choosing which lock should protect which
shared variable(s) is not easy — must weigh:

— Whether all variables are always accessed together
(use one lock if so)

— Whether code inside critical section can block (if not,
no throughput gain from fine-grained locking on
uniprocessor)

— Whether there is a consistency requirement if multiple
variables are accessed in related sequence (must
hold single lock if so)

« See “Subtle race condition in Java” below

— Cost of multiple calls to lock/unlock (increasing

parallelism advantages may be offset by those costs)

v“gmm‘a.r och CS 3204 Spring 2007 2/20/2007 6

Rules for Easy Locking

. |Evekry shared variable must be protected by a
oc

— One lock may protect more than one variable, but not
too many

— Acquire lock before touching (reading or writing)
variable

— Release when done, on all paths
+ If manipulating multiple variables, acquire locks
protecting each

— Acquire locks always in same order (doesn’t matter
which order, but must be same)

— Release in opposite order
— Don’t mix acquires & release (two-phase locking)

Virgini

CS 3204 Spring 2007 2/20/2007 7
() Zech o

Locks in Java/C#

void method() {
i i try {
synchronized void method() { e isE
code;
code;
synchronized (obj) { try {
more code; lock(obj);
is more code;
} transformed } finally { unlock(obj); }
- to even more code;
ORI (B CRELE: ———— |} finally { unlock(this); }
3

« Every object can function as lock — no need to declare &
initialize them!

= synchronized (locked in C#) brackets code in
lock/unlock pairs — either entire method or block {}

« finally clause ensures unlock() is always called
vugmmla'l'ed] CS 3204 Spring 2007 2/20/2007 8

Subtle Race Condition

public synchronized StringBuffer append(StringBuffer sb) {
int len = sb.length(); /1 note: StringBuffer.length() is synchronized
int newcount = count + len; 5
if (newcount > value.length) Not holding lock on sb’ — other

expandCapacity(newcount); Thread may change its length

sb.getChars(0, len, value, count); // StringBuffer.getChars() is synchronized
count = newcount;
return this;

* Race condition even though individual accesses to “sb” are
synchronized (protected by a lock)
— But “len” may no longer be equal to “sh.length” in call to getChars()

» This means simply slapping lock()/unlock() around every access to a
shared variable does not thread-safe code make
« Found by Flanagan/Freund

vugmmla'l'ed] CS 3204 Spring 2007 2/20/2007 9

Concurrency & Synchronization

Higher-level constructs

_vug] nia

W'I'ed]

Infinite Buffer Problem

Infinite Buffer Problem, Take 2

{
lock_acquire(buffer);
buffer[head++] = item;
lock_release(buffer);

}

producer(item) consumer()

lock_acquire(buffer);

while (buffer is empty) {
lock_release(buffer);
thread_yield();
lock_acquire(buffer);

item = buffer[tail++];

producer(item)

if (#consumers > 0)
for ¢ in consumers {
thread_unblock(c);

consumer()

{

lock_acquire g lock_acquire(buffer);
buffer[head++] = item; while (buffer is empty) {

~ock_release(buffer);

| —~consumers.add(current);
thread_block(current);
lock_acquire(buffer);

1

lock_release(buffer);
return item

}

« Trying to implement infinite buffer problem with locks alone leads to a
very inefficient solution (busy waiting!)
« Locks cannot express precedence constraint: A must happen before B.

vugmmla'l'ed] CS 3204 Spring 2007 2/20/2007 1

Context switch here would cause

Lost Wakeup problem: producer will put
item in buffer, but won't unblock
consumer thread (since consumer
thread isn’t in consumers yet)

vugmmla'l'ed] CS 3204 Spring 2007 2/20/2007 12

Infinite Buffer Problem, Take 3

consumer()

producer(item)
{

lock_acquire(buffer);

while (buffer is empty) {
consumers.add(current);
lock_release(buffer);
thread_block(current);
lock_acquire(buffer);

lock_acquire(buffer);
buffer[head++] = item;
if (#consumers > 0)
for c in consumers {
thread_unblock(c);

Infinite Buffer Problem, Take 4

producer(item)
{
lock_acquire(buffer);
bufferlhead++] = item;
if (#consumers > 0)
for c in consumers {
thread_unblock(c);

consumer()
{
lock_acquire(buffer);
while (buffer is empty) {
consumers.add(current);
lock_release(buffer);
thread_block(current);

lock_acquire(buffer);

Synchronization

« Low-level synchronization primitives:
— Disabling preemption, (Blocking) Locks, Spinlocks
— implement mutual exclusion
« Implementing precedence constraints directly via
thread_unblock/thread_block is problematic because
— It's complicated (see last slides)
— It may violate encapsulation from a software engineering
perspective
— You may not have that access at all (unprivileged code!)
* We need well-understood higher-level constructs
— Semaphores
— Monitors
CS 3204 Spring 2007 2/20/2007 15

_vug] nia

mTed]

lock_release(buffer); lock_release(buffer); }
} item = buffer[tail++]; } item = buffer[tail++];

lock_release(buffer); lock_release(buffer);

return item return item

} }
« What if consumers.add is done before lock is released? « This is correct, but complicated and very easy to get wrong
. —_ Want abstraction that does not require direct block/unblock call
_v“gmm‘a.r och CS 3204 Spring 2007 212012007 13 = “@ﬂmla.r wch CS 3204 Spring 2007 2/20/2007 14
Low-level vs. High-level
Semaphores S

¢ Invented by Edsger Dijkstra in 1965s
« Counter S, initialized to some value, with two operations:

— P(S) or “down” or “wait” — if counter greater than zero,
decrement. Else wait until greater than zero, then decrement

— V(S) or “up” or “signal” — increment counter, wake up any
threads stuck in P.
« Semaphores don’t go negative:
— #V + InitialValue - #P >= 0
« Note: direct access to counter value after initialization is
not allowed
« Counting vs Binary Semaphores
— Binary: counter can only be 0 or 1
« Simple to implement, yet powerful
— Can be used for many synchronization problems
===V/irginia CS 3204 Spring 2007 2/20/2007 16

mTed]

Infinite Buffer w/ Semaphores (1)

Infinite Buffer w/ Semaphores (2)

consumer()

semaphore items_avail(0);

producer()
{

lock_acquire(buffer);
buffer[head++] = item;
lock_release(buffer);
sema_up(items_avail);

}

consumer()
{
sema_down(items_avail);
lock_acquire(buffer);
item = bufferftail++];
lock_release(buffer);
return item;

Virgini

CS 3204 Spring 2007

e Semaphore “remembers” items put into
queue (no updates are lost)

2/20/2007 17

mTec_h

Virgini

semaphore items_avail(0);
semaphore buffer_access(1);

producer()

sema_down(buffer_access);
bufferlhead++] = item;
sema_up(buffer_access);
sema_up(items_avail);

{
sema_down(items_avail);
sema_down(buffer_access);
item = buffer[tail++];
sema_up(buffer_access);
return item;

}

» Can use semaphore instead of lock to

protect buffer access

CS 3204 Spri

mTec_h

ng 2007 2/20/2007 18

Bounded Buffer w/ Semaphores

semaphore items_avail(0); consumer()

semaphore buffer_access(1); {

semaphore slots_avail(CAPACITY); sema_down(items_avail);
producer()

sema_down(buffer_access);

{ item = buffer[tail++];
sema_down(slots_avail); sema_up(buffer_access);
sema_down(buffer_access); sema_up(slots_avail);
buffer[head++] = item; return item;
sema_up(buffer_access); }
sema_up(items_avail);

Rendezvous

» A needs to be sure B has advanced to
point L, B needs to be sure A has
advanced to L

semaphore A_madeit(0); semaphore B_madeit(0);

A_rendezvous_with_B() B_rendezvous_with_A()

{ {
} sema_up(A_madeit); sema_up(B_madeit);
i sema_down(B_madeit); sema_down(A_madeit);
« Semaphores allow for scheduling of }
resources
V‘“gmﬁ.r ch CS 3204 Spring 2007 2/20/2007 V‘“gmﬁ.r ch CS 3204 Spring 2007 2/20/2007 20

Waiting for an activity to finish

semaphore done_with_task(0); void
thread_create(do_task(void *arg)
do_task, {
(void*)&done_with_task); semaphore *s = arg;
/* do the task */
sema_down(done_with_task); sema_up(*s);
/I safely access task’s results

* Works no matter which thread is scheduled first after thread_create
(parent or child)

Elegant solution that avoids the need to share a “have done task”
flag between parent & child

» Two applications of this technique in Pintos Project 2

— signal successful process startup (“exec”) to parent

— signal process completion (“exit”) to parent

_vug] nia

1 CS 3204 Spring 2007 2/20/2007 21
WT pring /201

A classic

5 Philosophers, 1 bowl of
spaghetti

Philosophers (threads)
think & eat ad infinitum

— Need left & right fork to eat

(*?)

« Want solution that
prevents starvation &
does not delay hungry
philosophers
unnecessarily

_vug] nia

1 CS 3204 Spring 2007 2/20/2007 22
WT pring /20

Dining Philosophers (1)

semaphore fork[0..4](1);
philosopher(int i)

/lis 0..4

while (true) {
/* think .. finally */
sema_down(fork[i]); 11 get left fork
sema_down(fork[(i+1)%5]); // get right fork
[* eat */
sema_up(forkli]);
sema_up(fork[(i+1)%5]);
}

/I put down left fork
/I put down right fork

}

Dining Philosophers (2)
semaphore fork[0..4](1);

semaphore at_table(4); // allow at most 4 to fight for forks
philosopher(int i) /liis 0..4
{

while (true) {
[* think ... finally */
sema_down(at_table); /I sit down at table
sema_down(fork[i]); /I get left fork
sema_down(fork[(i+1)%5]); // get right fork
[* eat ... finally */
sema_up(fork[i]);
sema_up(fork[(i+1)%5]);

/I put down left fork
/I put down right fork

- - - i sema_up(at_table); I get up
¢ What is the problem with this solution? }
« Deadlock if all pick up left fork }
vuglnmlaTEd] CS 3204 Spring 2007 2/20/2007 23 vuglnmlaTEd] CS 3204 Spring 2007 2/20/2007 24

