
CS 3204 Spring 2007 Midterm Solution

1/12

CS 3204 Midterm Solution

29 students took the midterm. The table below shows information about each
problem, including who graded it. If you have questions, read this handout first,
then approach who graded your question, and if you still have questions,
approach me.

Problem 1 2 3 4
Possible Pts 16 40 20 24 100
Min 5 12 0 0 27
Max 15 38 19 22 80
Median 10 26 8 14 58
Average 10.1 25.1 8.3 12.9 56.4
Std Dev 2.0 8.2 5.4 6.8 14.2
Grader Xiaomo Back Butt Jaishankar

This midterm counts for 15% of your grade. Although your final grade will depend
on both exams and the project, students who have scored lower than 30 should
be aware that they are at risk of failing this class, unless their final exam score
shows a significant improvement. Students who have scored lower than 40 are at
risk of getting a grade lower than the C that is required by CS classes that have
CS 3204 as a prerequisite.

CS 3204 Spring 2007 Midterm
(Back Section)

N=29, Median=58

0

2

4

6

8

10

12

21-30 31-40 41-50 51-60 61-70 71-80

Score

S
tu

de
nt

s

Solutions are shown in this style.
Grading comments are shown in this style.

CS 3204 Spring 2007 Midterm Solution

2/12

1. Synchronization (16 pts)

a) (8 pts) A well in a desert village is only big enough to allow 5 villagers at a
time to draw water from it. If more than 5 villagers tried to get water
simultaneously, a brawl would occur and everyone would suffer.

Having recently learned that Computers can help solve problems, the
village elders have hired you to help them. You decide to model the
villager’s problem using a computer program. Assuming that each villager
is represented by a thread, the following code would be run by each
thread.

 villager_thread()
 {
 while(1)
 {
 waitInLine();
 // get water
 returnHome();
 // use water
 }

}

Using Pintos-style semaphores write the C code for the waitInLine()
and returnHome() functions to avoid a fight at the well.

(2 pts) // insert variable declaration(s)

// + initialization here

 struct semaphore accessToWell;
 sema_init(&accessToWell, 5);

(3 pts)
void waitInLine() {

 sema_down(&accessToWell);
}

(3 pts)

void returnHome() {
 sema_up(&accessToWell);
 }

CS 3204 Spring 2007 Midterm Solution

3/12

b) (8 pts) Would it be possible to implement a solution to this problem
exclusively with Pintos-style locks? Your solution should be race-condition
free and avoid busy waiting. If so, sketch the solution. If not, say why not.

A solution would require direct access to thread_block/unblock to avoid busy
waiting, enforce precedence constraints, and handle any lost wakeups. This
leads to a very complicated design. For these reasons, it is not advisable to use
locks for this problem – instead, semaphores or monitors (using condition
variables) should be used.

Correct solutions would likely reimplement the functionality these higher-level
synchronization constructs provide, for instance, see below for an
implementation that would mimic a monitor and the wait/broadcast paradigm.

// initialization
Number of available well slots = 5;
lock_init(accessToWell);

void waitInLine()
{
 lock_acquire(accessToWell);
 while(no avail well slots)
 {
 waiters.add(current);
 lock_release(well);
 thread_block(current);
 lock_acquire(accessToWell);
 }
 Number of well slots--;
 waiters.remove(current);
 lock_release(accessToWell);
}

void returnHome()
{
 lock_acquire(accessToWell);
 Number of well slots++;
 if (num waiters > 0)
 {
 call thread_unblock on
 all waiters;
 }
 lock_release(accessToWell);
}

Accepted answers included ‘yes’ – if the implementation was sketched correctly,
or ‘no’, if the argument was made that locks by themselves do not allow for the
expression of precedence constraints and that they do not support limiting the
number of threads accessing a resource simultaneously, unless the limit is 1.
Solutions that used one lock to allow only one person to use the well at a time did
not receive full credit, as this is grossly inefficient.

A common mistake was to propose to use 5 locks, however, this would mean
that a person could be blocked waiting for one slot even though other slots have
become free. Some have tried to fix this using lock_try_acquire() – but in this
case, the solution suffers from busy waiting.

CS 3204 Spring 2007 Midterm Solution

4/12

2. Named Pipes (40 pts)
Suppose you wanted to add support for first-in-first-out (fifo) special files to
Pintos. In the POSIX world, such special files are also referred to as named
pipes. They provide a way for two processes to communicate reliably: one
process (the ‘reader’) opens the pipe in read-only mode, a second process (the
‘writer’) opens the pipe in write-only mode. The kernel passes all data that is
written by the writer via the write() system call on to the reader. This is done
using a bounded buffer that the kernel allocates internally – no data is ever
written to the actual file system. To support named pipes, they have to be first
created and then opened by either end.

Here’s an example of how they can be used, where #include files and error
checking have been omitted for brevity.

// namedpipeexample.c
int
main(int ac, char *av[])
{
 mkfifo("apipe");
 exec("./reader apipe");
 exec("./writer apipe namedpipeexample.c");
 // not shown: namedpipeexample waits for its children
}

// reader.c
int
main(int ac, char *av[])
{
 int readend = fifo_open_read(av[1]);

 int bytes_read;
 char buf[80];
 while ((bytes_read = read(readend, buf, sizeof buf)) > 0)
 write (1, buf, bytes_read);
}

// writer.c
int
main(int ac, char *av[])
{
 int writeend = fifo_open_write(av[1]);
 int fd = open(av[2], O_RDONLY);

 int bytes_to_write;
 char buf[80];
 while ((bytes_to_write = read(fd, buf, sizeof buf)) > 0)
 write (writeend, buf, bytes_to_write);
}

When “namedpipeexample” is run, the resulting output should be a dump of its
source code, contained in namedpipeexample.c: the “writer” process will read the
.c file, write it to the named pipe, from where the “reader” process will read it and
write it to the console via its stdout file descriptor.

The prototypes for the system calls you must implement are shown here:

CS 3204 Spring 2007 Midterm Solution

5/12

// creates a new named pipe, returns true on success
bool mkfifo(const char *name);

// opens a named pipe for reading
// returns a fd if successful, -1 otherwise
int fifo_open_read(const char *name);

// opens a named pipe for writing
// returns a fd if successful, -1 otherwise
int fifo_open_write(const char *name);

a) (4 pts) To implement these three new system calls, explain what support

you have to provide to the standard C library with which Pintos user
programs are linked such that Pintos processes will be able to use these
new calls. Name 1 item.

Pintos’s standard C library would have to be extended with stubs that would
allow user processes to make those system calls. In addition, new system call
numbers will have to be defined and prototypes be added to the header files
such that user programs can link against these stubs such that system calls
appear as ordinary function calls to user programs. These changes concern
lib/user/syscall.c

b) (6 pts) What changes would you have to make to your system call
dispatch framework on the kernel side to handle these additional system
calls? Specifically, address how you ensure that a user process cannot
trick your kernel into accessing another process’s data!

You’ll need to add new entries to your system call dispatch table (in
userprog/syscall.c), or, if you are using a switch() statement, new arms to this
statement. You will have to check the validity of the system call number, and you
will have to check the validity of the zero-terminated string to which the user
process provides a pointer (all three calls take a “const char *”). This checking
involves making sure that all addresses starting from name until the first address
that contains a zero byte are valid user space addresses for this process.

c) (8 pts) Explain how you would implement mkfifo(), fifo_open_read(),
and fifo_open_write(). First, describe the data structure(s) you would
need to add to your kernel. Suppose you represented each created fifo
object in a data structure struct fifo. Sketch what members this
structure would contain:

You’ll have to allocate a buffer and some synchronization objects. 1 condition
variable + 1 lock would work, as would 1 lock + 2 semaphore, or 3 semaphores.
[For the bounded buffer problem, a 2 semaphore solution is also possible, but
needs to be justified.]

struct fifo {

/* bounded buffer to hold data written but not read */

CS 3204 Spring 2007 Midterm Solution

6/12

 char buffer[4096];
/* indexes reflecting the current amount of data */

 int head, tail;
/* lock to protect other members in this struct */
struct lock fifolock;
/* condition variable to signal change in buffer state */
struct condition pipestatechange;

}

For the remaining parts, you may assume the existence of a dictionary for
fifo objects that provides these functions:

// add a new fifo object, return true if successful
bool fifo_add(const char *name, struct fifo *fifo);

// retrieve a previously added fifo by name,
// or NULL if it does not exist
struct fifo *fifo_get(const char *name);

d) (4 pts) Sketch your implementation of mkfifo() – use C or pseudocode.

bool mkfifo(const char *name) {
 char *kname = copyin_string(name);
 if (!kname)
 return false;
 struct fifo * f = malloc(sizeof (*f));
 f->head = f->tail = 0;
 lock_init(&f->fifolock);
 cond_init(&f->pipestatechange);
 bool success = fifo_add(kname, f);
 free (kname);
 return success;
}

Note: copying the string in did not need to be shown here if it was discussed in part b)

e) (6 pts) Sketch your implementation fifo_open_read() and
fifo_open_write() – use C or pseudocode. In particular, address how the
representation of your file descriptors would have to change. (You may
use functions defined in your project submission if their names are self-
explanatory.)

Your file descriptor implementation will now need to include some identifier/flag
for each file descriptor that says whether this file descriptor refers to a named
pipe or a regular file. You’ll also have to distinguish between a read and write end
of the pipe. Let’s assume you’ve added a parameter “flag” to your allocate_fd
function that specifies this.

int fifo_open(const char *name, int flag) {
 int fd = -1;

char *kname = copyin_string(name);
 if (kname) {

struct fifo * f = fifo_get(kname);
if (f) {

 fd = allocate_fd(f, flag);

CS 3204 Spring 2007 Midterm Solution

7/12

 }
 free(kname);
 }
 return fd;
}

int fifo_open_read(const char *name) {
 return fifo_open(name, FIFO_READ);
}

int fifo_open_write(const char *name) {
 return fifo_open(name, FIFO_WRITE);
}

f) (6 pts) You will need to change your write() system call. Sketch how.
Make sure that there are no race conditions. Make sure that your
implementation does not limit the amount of data a process can pass to
write(), and ensure that no data is lost.

Your write() will need to identify when a write is issued for the write end of a pipe,
and if so, you’ll have to implement a straight bounded-buffer.

int write(int fd, const void *buffer, size_t len) {
 struct fifo * pipe = fd_get_pipe_write_end(fd);
 if (pipe)
 return pipe_write(pipe, buffer, len);
 // else handle remaining cases
}

int pipe_write(struct fifo *pipe, const void *buffer, size_t len) {
 int total_written = 0;
 lock_acquire(&pipe->lock);
 while (len > 0) {
 while (fifo_isfull(pipe))
 cond_wait(&pipe->pipestatechange, &pipe->lock);
 int bytes_copied = fifo_copy_into(pipe, buffer, len);
 buffer += bytes_copied;
 len -= bytes_copied;
 total_written += bytes_copied;
 cond_signal(&pipe->pipestatechange, &pipe->lock);
 }
 lock_release(&pipe->lock);
 return total_written;
}

g) 6 pts) Sketch how your read() system call implementation will have to
change. Make sure that proper synchronization is used.

int read(int fd, void *buffer, size_t len) {
 struct fifo * pipe = fd_get_pipe_read_end(fd);
 if (pipe)
 return pipe_read(pipe, buffer, len);
 // else handle remaining cases
}

int pipe_read(struct fifo *pipe, void *buffer, size_t len) {
 lock_acquire(&pipe->lock);
 while (fifo_isempty(pipe))
 cond_wait(&pipe->pipestatechange, &pipe->lock);

CS 3204 Spring 2007 Midterm Solution

8/12

 int bytes_copied = fifo_copy_out(pipe, buffer, len);
 cond_signal(&pipe->pipestatechange, &pipe->lock);
 lock_release(&pipe->lock);
 return bytes_copied;
}

Alternative solutions are ok; for instance, modeling a pipe using two semaphores
as discussed in class is possible as well – in this case, the counter in the
semaphore could denote the number of elements in the buffer and the number of
free slots, respectively.

You didn’t have to provide all details such as error checking; we were generally looking that you
understood that a named pipe involves implementing a bounded buffer problem that includes the
allocation of a shared buffer, requires synchronization between reader and writer in both directions,
as well as proper exclusion applied to the shared buffer. For the file descriptor part, we looked that
you understood that file descriptors are local, not global, and that they can refer to different objects:
stdout, stdin, files, and now pipes (in project 4 also directories.) Second, just like “create()” does
not open a file, “mkfifo()” does not open a pipe, which is apparent from its signature.
C code was not required, but if you chose to code in C, I deducted for gross programming errors
such as registering a local variable in fifo_add().

3. Scheduling (20 pts)
a) (8 pts) One of the new features in Microsoft’s Vista operating system is

“cycle-based CPU accounting.” This method of CPU accounting uses the
CPU’s internal cycle counter register to accurately determine how much
CPU time a thread consumed. The cycle counter register is incremented
every clock cycle, so it can be used as a very accurate wall clock – for
instance, on a 1GHz processor, it provides nanosecond accuracy.

The accounting works as follows: when a thread is scheduled, or before
returning from an interrupt, the current value of the cycle counter is
recorded as the thread’s start time. When a thread is interrupted by an
interrupt, or when the thread blocks, the cycle counter is read again and
the delta is charged to the thread.

Consider that all versions of Windows use a variant of a MLFQS
scheduler.

i. (4 pts) Explain briefly why Vista’s scheduler must know a thread’s

past CPU consumption!

General-purpose schedulers generally try to strike a balance between providing a
SPN-like policy for I/O-bound processes with expected short CPU bursts, and
making sure that CPU-bound processes with expected long CPU bursts will not
starve. Since general-purpose OS generally do not know the characteristics of a
process beforehand, they try to infer it: in particular, they make the assumption
that a process’s future CPU consumption will be like its past consumption.

CS 3204 Spring 2007 Midterm Solution

9/12

Full credit was awarded to solutions that stated how CPU utilization is used to determine priorities,
and that past utilization is used to predict future utilization. Solutions that simply stated that past
consumption is used to determine recent CPU were given minimal grade.

ii. (4 pts) Name at least one problem with the approach used by the
BSD 4.4 scheduler you implemented in project 1 that Vista’s
approach solves.

First, the approach does not sample like BSD’s approach did. Therefore, it is not
subject to the problems associated with sampling, such as being unable to
discern frequencies higher than half the sampling rate – which is typical for I/O
processes with short CPU bursts. Instead, CPU time is measured accurately by
starting and stopping a clock.
Second, this approach accurately accounts for time spent in interrupts because a
thread is not charged for this time: the thread’s clock is stopped and then
restarted while an interrupt occurs. Therefore, the conclusions drawn by the
scheduler are more likely to be based on a thread’s actual behavior, not on which
interrupts happened to occur while it was running.

Solutions that also stated that Vista’s scheme cannot be tricked by thread_yield() also received full
credit. However, solutions that only mentioned a “trick” but did not explain how Vista’s version
helps only received partial credit.

b) (12 pts) Systems that use strict priority scheduling, such as the VxWorks
Real-time Operating System used in the Mars Pathfinder mission, must
implement some mechanism to avoid priority inversion.

i. (4 pts) Briefly define priority inversion.

Priority inversion occurs if a high-priority thread waits on a resource held by a
low-priority thread, but the low-priority thread cannot make progress to release
the resource because the scheduler picks a third, medium-priority thread instead.
In this case, the relative priorities of the high and medium priority threads are
inverted compared to the user’s intention when assigning priorities to threads.

Solutions that simply stated that a high priority process waits on a low priority one without any
reason received only partial credit. Also, solutions that stated that a low priority process cannot run
as it does not have the highest priority even though the high priority process was blocked lost
majority of the points.

ii. (4+4 pts) Can priority inversion also occur in general-purpose OS,
such as Linux or Windows? If that is the case, why do those OS’s
not implement techniques such as priority donation to address this
problem? If priority inversion does not occur, explain why not!

CS 3204 Spring 2007 Midterm Solution

10/12

Priority inversion can certainly occur in general-purpose OS as well, there is
nothing in its definition that would not apply to general-purpose OS.

Potential reasons why general-purpose OS do not commonly employ
countermeasures include:

• General-purpose generally do not use strict priority scheduling – instead,
they employ a dynamic priority adjustment mechanism by which the
dynamic, effective priority of the low-priority might eventually raised to be
above the priority of the originally medium-priority thread, allowing it to
make progress and release the resource the high-priority thread is waiting
for.

• The effect of a temporary inversion is probably not catastrophic, because
unlike the Mars Pathfinder OS, general purpose OS do not provide real-
time scheduling guarantees for their processes in the first place. Secondly,
they also do not (frequently) employ watchdog timers that reset the
system if a task is delayed.

• For completeness, we should point out that some general-purpose OS (in
particular, Solaris 2), do implement priority inheritance on internal kernel
locks.

Solutions that did not give the reason for, or did not answer whether priority inversion occurs in
Linux/Windows or not, received only partial credit. Most students got the second half of this
question right and received full credit.

4. Deadlock (24 pts)
a) (14 pts) One CS 3204 group implemented wait()/exit() using a semaphore

that is used to signal a child process’s completion to its parent, as follows:

process_wait(tid_t ctid)
{
 lock_acquire(process_list);
 find child c with tid == ctid in process_list
 sema_down(&c->exit_semaphore); // wait for child
 lock_release(process_list);
}

process_exit()
{
 lock_acquire(process_list);
 find own position o in process list
 sema_up(&o->exit_semaphore); // signal parent
 lock_release(process_list);
}

However, they found that their Pintos kernel hung for several tests, but not
for all tests.

i. (4 pts) Explain what sequence of events would lead to their kernel
deadlocking and why.

CS 3204 Spring 2007 Midterm Solution

11/12

If parent calls wait() before the child exits, the parent will acquire the
process_list lock, and then block on sema_down (as the child has not yet
exited). Now, when the child exits, process_exit() blocks on
lock_acquire. This cyclic dependency leads to deadlock.

If the cyclic dependency is identified, I have given full grade. If the answers to first and second
question are interchanged, I have given partial credit.

ii. (4 pts) Explain under what circumstances deadlock would not
occur.

No deadlock if the child exits before the parent calls process_wait().
Specifically, once the process_exit() acquires process_list lock,
deadlock would not occur.

If it is mentioned that the child exits before parent, I gave full credit.

iii. (6 pts) How could the code be fixed to avoid deadlock?

Moving sema_up() and sema_down() after lock_release() in both
process_wait() and process_exit() is one solution to avoid a deadlock
here. Other solutions that violate any one of the four conditions for deadlocks
may also work.

I have given full credit to any solution that removes of one of the 4 conditions of the deadlock.

b) (10 pts) For this problem, consider locks only. One of the necessary
conditions for a deadlock to occur is that there must be a cycle in the wait-
for graph. To avoid such cycles, suppose you assigned a unique integer to
each lock upon creation.

i. (6 pts) Explain how you could change lock_acquire() to ensure

that there will never be cycles in the wait-for graph!

The unique identifier could be used to enforce a strict order in which threads
acquire multiple locks. This can be done by forcing the threads to acquire locks in
a specific order (e.g. ascending order of integer IDs) only. If lock A has an
identifier lower than lock B, lock_acquire() will allow threads to first get A and
then B, but not vice versa. This prevents deadlocks due to different threads
acquiring same lock in different order.

Mention of the order in which locks are obtained gets full credit. In case some other way is
identified, partial credit is given. If there is no mention of unique integer, I did not give any credit.

ii. (4 pts) How would your technique affect the way the user would use
lock_acquire()?

CS 3204 Spring 2007 Midterm Solution

12/12

Previously, lock_acquire() either obtained the lock immediately and returned or
it waited until it could acquire the lock. In either case, if it did return, the lock had
been acquired.
With the proposed change, a call to lock_acquire() could now also fail if a
thread tried to acquire locks in an order that violates the fixed ordering. Hence,
the user would have to modify the calling code to handle this failure situation.

Full credit if the person mentions any way in which the user would be affected due to the change in
lock_acquire. I also gave partial credit if the answer to the previous part is answered here.

