[/O Management and Disk
Scheduling

Chapter 11

Categories of I/O Devices

* Human readable
— Used to communicate with the user
— Printers

— Video display terminals
* Display
» Keyboard
* Mouse

Categories of I/O Devices

* Machine readable
— Used to communicate with electronic
equipment
— Disk and tape drives
— Sensors
— Controllers

— Actuators

Categories of I/O Devices

* Communication
— Used to communicate with remote devices

— Digital line drivers
— Modems

Differences in I/O Devices

* Data rate

— May be differences of several orders of
magnitude between the data transfer rates

Gigabit Ethernet

Graphics display

Hard disk

Ethernet

Optical disk

Scanner

Laser printer

Floppy disk

Modem

Mouse

Keyboard

=

o 102 10* 109 108 106 107 108 10*
Data Rate (hps)

Figure 11.1 Typical I/O Device Data Rates

Differences in I/O Devices

 Application
— Disk used to store files requires file
management software

— Disk used to store virtual memory pages
needs special hardware and software to
support it

— Terminal used by system administrator may
have a higher priority

Differences in I/O Devices

Complexity of control

Unit of transfer

— Data may be transferred as a stream of bytes
for a terminal or in larger blocks for a disk

Data representation

— Encoding schemes

Error conditions

— Devices respond to errors differently

Performing I/O

* Programmed I/O
— Process is busy-waiting for the operation to
complete
¢ Interrupt-driven I/O
— I/0O command is issued
— Processor continues executing instructions

— 1/O module sends an interrupt when done

Performing I/0

 Direct Memory Access (DMA)

— DMA module controls exchange of data
between main memory and the I/O device

— Processor interrupted only after entire block
has been transferred

Relationship Among Techniques

Table 11.1 I/O Techniques

No Interrupts Use of Interrupts

L/O-to-memory transfer Programmed I'O Interrupt-driven I'O
through processor

Direct I/O-to-memory Direct memory access (DMA)
transfer

Evolution of the I/O Function

* Processor directly controls a peripheral
device
* Controller or I/O module is added

— Processor uses programmed I/O without
interrupts

— Processor does not need to handle details of
external devices

Evolution of the I/O Function

* Controller or I/O module with interrupts

— Processor does not spend time waiting for
an /O operation to be performed

* Direct Memory Access

— Blocks of data are moved into memory
without involving the processor

— Processor involved at beginning and end
only

Evolution of the I/O Function

 I/O module is a separate processor
* I/O processor

— I/O module has its own local memory

— Its a computer in its own right

Direct Memory Access

* Processor delegates I/O operation to the
DMA module

* DMA module transfers data directly to
or form memory

* When complete DMA module sends an
interrupt signal to the processor

Dat
Count
Data Lines L]
Register
Address
Address Lines ¢——— Register
DMA Request «
DMA A cknowledge Control
Interrupt 4 Logi
Read 3
Write

Figure 11.2 Typical DMA Block Diagram

DMA Configurations

=EEE - 2E

(a) Single-bus, detached DMA

|P|'numu DMA | DMA |] |m..m|]
1 D

DMA Configurations

Sy
= =

o = =

Figure 11.3 Alternative DMA Configurations

Operating System Design
Issues
* Efficiency

— Most I/0 devices extremely slow compared
to main memory

— Use of multiprogramming allows for some
processes to be waiting on I/O while
another process executes

— 1/O cannot keep up with processor speed

— Swapping is used to bring in additional
Ready processes which is an I/O operation

19

Operating System Design
Issues

+ Generality

— Desirable to handle all I/O devices in a
uniform manner

— Hide most of the details of device I/O in
lower-level routines so that processes and
upper levels see devices in general terms
such as read, write, open, close, lock,
unlock

20

mmunication)
Architecture

) GO

() Local peripheral device (b) Communications port

Figure 11.4 A Model of I/O Organization 21

I/O Buffering

+ Reasons for buffering

— Processes must wait for I/O to complete
before proceeding

— Certain pages must remain in main memory
during I/0

22

I/O Buffering

* Block-oriented
— Information is stored in fixed sized blocks
— Transfers are made a block at a time
— Used for disks and tapes

* Stream-oriented
— Transfer information as a stream of bytes

— Used for terminals, printers, communication
ports, mouse and other pointing devices,
and most other devices that are not
secondary storage

23

Single Buffer

 Operating system assigns a buffer in
main memory for an I/O request

* Block-oriented
— Input transfers made to buffer
— Block moved to user space when needed

— Another block is moved into the buffer
* Read ahead

24

Single Buffer

» Block-oriented

— User process can process one block of data
while next block is read in

— Swapping can occur since input is taking
place in system memory, not user memory

— Operating system keeps track of assignment
of system buffers to user processes

25

Single Buffer

» Stream-oriented
— Used a line at time

— User input from a terminal is one line at a
time with carriage return signaling the end
of the line

— Output to the terminal is one line at a time

26

I/O Buffering

Operating System User Process

10 Device In || || I]

(a) No bufTering

Operating System User Process

10 Device In Move

(b) Single buffering

27

Double Buffer

+ Use two system buffers instead of one

* A process can transfer data to or from one
buffer while the operating system empties or
fills the other buffer

Operating System User Process

1/0 Device i Mo

(¢) Double buffering

28

Circular Buffer

* More than two buffers are used

« Each individual buffer is one unit in a circular
buffer

« Used when I/O operation must keep up with
process

Operating System User Process

.) ‘E‘ - a

(d) Circular buffering

29

Disk Performance Parameters

* To read or write, the disk head must be
positioned at the desired track and at the
beginning of the desired sector

* Seek time

— Time it takes to position the head at the
desired track

 Rotational delay or rotational latency

— Time its takes for the beginning of the
sector to reach the head

30

Timing of a Disk I/O Transfer

Wait for Wait for Seek Rotationa

Device Channel Transfer
R

L

44— Device Bsy ——478 —— MMM

Figure 11.6 Timing of a Disk I/O Transfer

31

Disk Performance Parameters

» Access time
— Sum of seek time and rotational delay

— The time it takes to get in position to read or
write

» Data transfer occurs as the sector moves
under the head

32

Disk Scheduling Policies

+ Seek time is the reason for differences in
performance

* For a single disk there will be a number
of I/O requests

« If requests are selected randomly, we
will poor performance

33

Disk Scheduling Policies

¢ First-in, first-out (FIFO)
— Process request sequentially
— Fair to all processes
— Approaches random scheduling in performance if
there are many processes

100
125
150
175
199

track number

A J

(a) FIFO Time

34

Disk Scheduling Policies

* Priority
— Goal is not to optimize disk use but to meet
other objectives
— Short batch jobs may have higher priority

— Provide good interactive response time

35

Disk Scheduling Policies

 Last-in, first-out

— Good for transaction processing systems

* The device is given to the most recent user so
there should be little arm movement

— Possibility of starvation since a job may
never regain the head of the line

36

Disk Scheduling Policies

Shortest Service Time First

— Select the disk I/O request that requires the least
movement of the disk arm from its current position

— Always choose the minimum Seek time

25

50

75
100
125
150
175
199

track number

(b) SSTF Time

37

Disk Scheduling Policies

SCAN

— Arm moves in one direction only, satisfying all
outstanding requests until it reaches the last track in
that direction

— Direction is reversed

25

50

75
100
125
150
175

199 —
(¢) SCAN Time

track number

38

Disk Scheduling Policies

« C-SCAN
— Restricts scanning to one direction only

— When the last track has been visited in one
direction, the arm is returned to the opposite end of
the disk and the scan begins again

0

25
50
75
100
15
150
175

199 T
Id) CSCAN ime

track number

39

Disk Scheduling Policies

* N-step-SCAN
— Segments the disk request queue into
subqueues of length N

— Subqueues are processed one at a time,
using SCAN

— New requests added to other queue when
queue is processed

- FSCAN

— Two queues
— One queue is empty for new requests

40

Disk Scheduling Algorithms

Table 11.2 Comparison of Disk Scheduling Algorithms

(a) FIFO (b) SSTF (c) SCAN (d) C-SCAN
(starting at track 100) (starting at track 100) (starting at track 100, in the (starting at track 100, in the
direction of increasing track direction of increasing track
number) number)
Next track Number of Next track Number of Next track Number of Next track Number of
accessed tracks accessed tracks accessed tracks accessed tracks
traversed traversed traversed traversed
55 45 90 10 150 30 150 50
58 3 58 32 160 10 160 10
39 19 55 3 184 24 184 24
18 21 39 16 90 94 18 166
90 72 38 1 58 32 38 20
160 70 18 20 55 3 39 1
150 10 150 132 39 16 55 16
38 112 160 10 38 1 58 3
184 146 184 24 18 20 90 32
Average seek 553 Average seek 275 Average seek 278 Average seek 358
length length length length

41

RAID

Redundant Array of Independent Disks

Set of physical disk drives viewed by the
operating system as a single logical drive

Data are distributed across the physical
drives of an array

Redundant disk capacity is used to store
parity information

42

RAID 0 (non-redundant)

O Oy Oy
L] L] i) |

() RAID 0 (non-redundant)

43

RAID 1 (mirrored)

11111111111

44

RAID 2 (redundancy through
Hamming code)

o o D o O aes as>
I S I S S I N B e B
] e [T] [T D] [T [Tee
(7(751'13'"7510&7 7 7

¢) RAID 2 (redundancy through ing cc

45

RAID 3 (bit-interleaved
parity)

] [[[[!
i 0 T T R .
(d) RAID 3 (bit-interleaved parity)

46

RAID 4 (block-level parity)

Dy Dy oy oy O
. -: : f]

&) RAID 4 (block-le

47

RAID 5 (block-level
distributed parity)

o L
Eolealies
e | e
(7 for] (]

1 distributed parity)

48

RAID 6 (dual redundancy)

S—
]

49

Disk Cache

+ Buffer in main memory for disk sectors

» Contains a copy of some of the sectors
on the disk

50

Least Recently Used

The block that has been in the cache the
longest with no reference to it is
replaced

The cache consists of a stack of blocks

Most recently referenced block is on the
top of the stack

When a block is referenced or brought
into the cache, it is placed on the top of
the stack

51

Least Recently Used

The block on the bottom of the stack is
removed when a new block is brought in

Blocks don’t actually move around in
main memory

A stack of pointers is used

52

Least Frequently Used

The block that has experienced the fewest
references is replaced

A counter 1s associated with each block

Counter is incremented each time block
accessed

Block with smallest count is selected for
replacement

Some blocks may be referenced many times in
a short period of time and the reference count
is misleading

53

New Section Old Section
we [T T T T T T T 1 T

Re-reference;
count unchanged Re-reference;

count := count + 1

Miss (new block brought in)
count := 1

(a} FIFO

New Section Middle Section Old Section

wo [T T T T T T[] |

(b) Use of three sections

Figure 11.9 Freq y-Based Repl

54

o0 —]
=) —
g
g 0
E
S 30—
g
#
=
20— —
S —— —_ IBM MVS
10 — ana
Ttesan.... IBMSYS
0 T T T T T T
5 10 13 20 25 0
Cache slze (megabytes)
Figure 11.10 Some Disk Cache Performance Results Using LRU
55
70—
0 —
50—
: IBM VM
i
g 0
E
5w
el IBM MVS
=]
20—
VAX UNIX
10 —
’ T T T T T T
H 10 15 20 25 0
Cache size (megabytes)
Figure 11.11 Disk Cache Perfor Using Freq v-Based Repl t [ROBI90]

56

UNIX SCR4 I/O

« Each individual
device is associated

File Subsystem

with a special file

° TWO tprS Of I/O Buffer |(Cache '

— Buffered
Ch: 1 Block
— Unbuffered wacter_|_Block_
Device Drivers I
Figure 11.12 UNIX I/O Structure
57
£
if
3
Hat Table mmercane £ &
Dz\im#,ﬂlmﬂ———i

Free List

H
H
: v
! ¥
¥
- \:D]

Figure 11.13 UNIX Buffer Cache Organization

58

Linux I/O

» Elevator scheduler

— Maintains a single queue for disk read and
write requests

— Keeps list of requests sorted by block
number

— Drive moves in a single direction to satisy
each request

59

Linux [/O

* Deadline scheduler

— Uses three queues
* Incoming requests
* Read requests go to the tail of a FIFO queue
* Write requests go to the tail of a FIFO queue

— Each request has an expiration time

60

Linux I/O

Sorted (elevator) queue

T

Read FIFO queune

T T

Write FIFO queue

—O

T

Figure 11.14 The Linux Deadline I/O Scheduler

61

Linux [/O

* Anticipatory I/O scheduler

— Delay a short period of time after satisfying
a read request to see if a new nearby request

can be made

62

Windows I/O

* Basic I/O modules
— Cache manager
— File system drivers
— Network drivers
— Hardware device drivers

63

Windows [/O

I/O Manager
Cache
Manager

File System
Drivers

Network
Drivers
Hardware
Device Drivers

Figure 11.15 Windows I/O Manager

64

