
CS 3204 Operating Systems

©William D McQuain, January 2005 1

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

1Synchronization

Operating Systems

Concurrency

Value of concurrency – speed and economics

But few widely-accepted concurrent programming languages (Java is an exception)

Few concurrent programming paradigms
- each problem requires careful consideration
- there is no common model

OS tools to support concurrency tend to be:
- low level (not that there’s anything wrong with that)
- non-portable (pthreads and Java may be exceptions)

concurrency the simultaneous occurrence of events or circumstances; agreement or
union in action

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

2Synchronization

Operating Systems

Command Execution

Another
Command?

Execute
Command

No
Exit Loop

Yes

Enter Loop

Another
Command?

No
Exit Loop

Yes

Enter Loop

Wait for Child
to Terminate

Execute
Command

Execute
Command

…

(a) UNIX Shell (b) Windows Command Launch

fork()code CreateProcess()code

CS 3204 Operating Systems

©William D McQuain, January 2005 2

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

3Synchronization

Operating Systems

Synchronizing on a Shared Variable

…

Wait runTime
seconds

Initialize

fork(…)

runFlag=FALSE

Terminate

Thread Work

Exit

runFlag?

T
R
U
E

F
A
L
S
E

T
R
U
E

F
A
L
S
E

T
R
U
E

F
A
L
S
E

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

4Synchronization

Operating Systems

Critical Sections

shared double balance;

Code for p1 Code for p2
.

balance = balance + amount; balance = balance - amount;
.

balance+=amount balance-=amount

balance

critical section a segment of code that cannot be (safely) executed while some other
process is in a corresponding segment of code

CS 3204 Operating Systems

©William D McQuain, January 2005 3

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

5Synchronization

Operating Systems

Critical Sections

…
load R1, balance
load R2, amount

…
load R1, balance
load R2, amount
sub R1, R2
store R1, balance
…

add R1, R2
store R1, balance
…

Timer interrupt

Timer interrupt

Execution of p1 Execution of p2

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

6Synchronization

Operating Systems

Critical Sections

mutual exclusion only one process can be in the critical section at a time

There is a race to execute critical sections

The sections may be defined by different code in different processes
- ∴ cannot easily detect with static analysis

Without mutual exclusion, results of multiple execution are not determinate

Need an OS mechanism so programmer can resolve races

CS 3204 Operating Systems

©William D McQuain, January 2005 4

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

7Synchronization

Operating Systems

Disabling Interrupts

shared double balance;

Code for p1 Code for p2
disableInterrupts(); disableInterrupts();
balance = balance + amount; balance = balance - amount;
enableInterrupts(); enableInterrupts();

Interrupts could be disabled for arbitrarily long periods

Really only want to prevent p1 and p2 from interfering with one another; this blocks all pi

Try using a shared “lock” variable

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

8Synchronization

Operating Systems

Using a Lock Variable

shared bool lock = FALSE;
shared double balance;

Code for p2
/* Acquire the lock */
while (lock);
lock = TRUE;

/* Execute critical sect */
balance = balance - amount;

/* Release lock */
lock = FALSE;

Code for p1
/* Acquire the lock */

while (lock);
lock = TRUE;

/* Execute critical sect */
balance = balance + amount;

/* Release lock */
lock = FALSE;

Will this work?

CS 3204 Operating Systems

©William D McQuain, January 2005 5

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

9Synchronization

Operating Systems

Busy Wait Condition

p1

p2

B
lo

ck
ed

at
 w
h
i
l
e

l
o
c
k

=

T
R
U
E

l
o
c
k

=

F
A
L
S
E

In
te

rr
up

t

In
te

rr
up

t

In
te

rr
up

t

At best, the solution requires busy-waiting on the part of the “blocked” process.

Busy-waiting wastes CPU cycles and is inelegant.

However…

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

10Synchronization

Operating Systems

Unsafe “Solution”

Looks like we’ve replaced one race
condition with another.

Is it possible to solve the problem?

Code for p2
/* Acquire the lock */
while (lock);
lock = TRUE;

/* Execute critical sect */
balance = balance - amount;

/* Release lock */
lock = FALSE;

Code for p1
/* Acquire the lock */

while (lock);
lock = TRUE;

/* Execute critical sect */
balance = balance + amount;

/* Release lock */
lock = FALSE;

Consider what could happen if an context switch occurred just after P1 exits its busy-wait
loop:

CS 3204 Operating Systems

©William D McQuain, January 2005 6

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

11Synchronization

Operating Systems

Canonical Problem

<shared global declarations>
<initial processing>
fork(proc_0, 0);
fork(proc_1, 0);

proc_0() {
while (true) {
<compute section>;
<critical section>;

}
}

proc_1() {
while (true) {
<compute section>;
<critical section>;

}
}

We must find a way to enforce mutual exclusion on the respective critical sections.

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

12Synchronization

Operating Systems

Solution Constraints and Assumptions

Only processes competing for a CS are involved in resolving who enters the CS

Once a process attempts to enter its CS, it cannot be postponed indefinitely

After requesting entry, only a bounded number of other processes may enter before the
requesting process

Memory read/writes are indivisible (simultaneous attempts result in some arbitrary order
of access)

There is no priority among the processes

Relative speeds of the processes/processors is unknown

Processes are cyclic and sequential

CS 3204 Operating Systems

©William D McQuain, January 2005 7

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

13Synchronization

Operating Systems

Dijkstra Semaphore
Invented in the 1960s

Conceptual OS mechanism, with no specific implementation defined

Basis of all contemporary OS synchronization mechanisms

Classic paper describes several software attempts to solve the problem

Found a software solution, but then proposed a simpler hardware-based solution

A semaphore, s, is a nonnegative integer variable that can only be changed or tested by
these two indivisible (atomic) functions:

V(s): [s = s + 1]
P(s): [while (s == 0) {wait}; s = s - 1]

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

14Synchronization

Operating Systems

Solving the Canonical Problem

semaphore mutex = 1;
fork(proc_0, 0);
fork(proc_1, 0);

proc_0() {
while (true) {
<compute section>;
P(mutex);
<critical section>;
V(mutex);

}
}

proc_1() {
while (true) {
<compute section>;
P(mutex);
<critical section>;
V(mutex);

}
}

Remember that P() and V() are, by definition, indivisible operations.

CS 3204 Operating Systems

©William D McQuain, January 2005 8

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

15Synchronization

Operating Systems

Semaphore Solution to Shared Balance

What if there’s a context switch at the
indicated point now?

No problem at all.

And there cannot be a context switch
within the body of P() or V().

Code for p2
/* Acquire the semaphore */
P(mutex);

/* Execute critical sect */
balance = balance - amount;

/* Release semaphore */
V(mutex);

Code for p1
/* Acquire the semaphore */

P(mutex);
/* Execute critical sect */

balance = balance + amount;
/* Release semaphore */

V(mutex);

If semaphores are available, there is a simple solution to the shared balance problem:

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

16Synchronization

Operating Systems

Sharing Two Variables

int x, y;
fork(proc_A, 0);
fork(proc_B, 0);

proc_A() {
while (true) {
<compute section A1>;
update(x);
<compute section A2>;
retrieve(y);

}
}

proc_B() {
while (true) {
retrieve(x);
<compute section B1>;
update(y);
<compute section B2>;

}
}

In effect, the processes are using each of the two shared variables as a one-way
communication channel.

But values may be lost, and the same value may be retrieved multiple times.

CS 3204 Operating Systems

©William D McQuain, January 2005 9

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

17Synchronization

Operating Systems

Semaphore Solution

int x, y;
semaphore s1 = 0, s2 = 0;
fork(proc_A, 0);
fork(proc_B, 0);

proc_A() {
while (true) {
<compute section A1>;
update(x);
// signal proc_B
V(s1);
<compute section A2>;
// wait for proc_B
P(s2);
retrieve(y);

}
}

proc_B() {
while (true) {
// wait for proc_A
P(s1);
retrieve(x);
<compute section B1>;
update(y);
// signal proc_A
V(s2);
<compute section B2>;

}
}

The semaphores are being used here in a more complex manner…

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

18Synchronization

Operating Systems

Bounded Buffer Problem

ProducerProducer ConsumerConsumer

Empty Pool

Full Pool

CS 3204 Operating Systems

©William D McQuain, January 2005 10

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

19Synchronization

Operating Systems

Bounded Buffer Problem (2)

producer() {
buf_type *next, *here;
while (true) {

produce_item(next);
// Claim an empty
P(empty);
P(mutex);

here = obtain(empty);
V(mutex);
copy_buffer(next, here);
P(mutex);

release(here, fullPool);
V(mutex);
// Signal a full buffer
V(full);

}
}

consumer() {
buf_type *next, *here;
while (true) {

// Claim full buffer
P(mutex);
P(full);

here = obtain(full);
V(mutex);
copy_buffer(here, next);
P(mutex);

release(here, emptyPool);
V(mutex);
// Signal an empty buffer
V(empty);
consume_item(next);

}
}

semaphore mutex = 1;
semaphore full = 0; // A general (counting) semaphore
semaphore empty = N; // A general (counting) semaphore
buf_type buffer[N];

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

20Synchronization

Operating Systems

Bounded Buffer Problem (3)

producer() {
buf_type *next, *here;
while (true) {

produce_item(next);
// Claim an empty
P(empty);
P(mutex);

here = obtain(empty);
V(mutex);
copy_buffer(next, here);
P(mutex);

release(here, fullPool);
V(mutex);
// Signal a full buffer
V(full);

}
}

consumer() {
buf_type *next, *here;
while (true) {

// Claim full buffer
P(full);
P(mutex);

here = obtain(full);
V(mutex);
copy_buffer(here, next);
P(mutex);

release(here, emptyPool);
V(mutex);
// Signal an empty buffer
V(empty);
consume_item(next);

}
}

semaphore mutex = 1;
semaphore full = 0; // A general (counting) semaphore
semaphore empty = N; // A general (counting) semaphore
buf_type buffer[N];

CS 3204 Operating Systems

©William D McQuain, January 2005 11

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

21Synchronization

Operating Systems

Readers-Writers Problem

Readers
Writers

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

22Synchronization

Operating Systems

Readers-Writers Problem

Shared Resource

ReaderReader
ReaderReader
ReaderReader
ReaderReader
ReaderReader
ReaderReader
ReaderReader
ReaderReader

WriterWriter
WriterWriter
WriterWriter
WriterWriter
WriterWriter
WriterWriter
WriterWriter

It’s logically acceptable for an arbitrary number of readers to access the shared resource at
the same time…

…but if a writer is accessing the shared resource, it’s unsafe to allow any other reader or
writer to access it at the same time.

CS 3204 Operating Systems

©William D McQuain, January 2005 12

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

23Synchronization

Operating Systems

Readers-Writers Problem

ReaderReader

Shared Resource

ReaderReader
ReaderReader

ReaderReader
ReaderReader

ReaderReader
ReaderReader

ReaderReader

WriterWriter
WriterWriter

WriterWriter
WriterWriter

WriterWriter
WriterWriter

WriterWriter

ReaderReader

Shared Resource

ReaderReader
ReaderReader

ReaderReader
ReaderReader

ReaderReader
ReaderReader

ReaderReader

WriterWriter
WriterWriter

WriterWriter
WriterWriter

WriterWriter
WriterWriter

WriterWriter

OK

OK

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

24Synchronization

Operating Systems

Readers-Writers Problem

Shared Resource

ReaderReader
ReaderReader

ReaderReader
ReaderReader

ReaderReader
ReaderReader

WriterWriter
WriterWriter

WriterWriter
WriterWriter

WriterWriter
WriterWriter

WriterWriterReaderReader
ReaderReader

Not OK

This is simply a more complex version of the shared balance problem.

As before, unfortunate context switches between readers and the writer could lead to
readers receiving incorrect data.

Similar issues arise with multiple writers.

CS 3204 Operating Systems

©William D McQuain, January 2005 13

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

25Synchronization

Operating Systems

First Solution
reader() {

while (true) {
<other computing>;
P(mutex); // 1

readCount++;
if (readCount == 1) // 2

P(writeBlock); // 3
V(mutex); // 4
// Critical section
access(resource); // 5
P(mutex); // 6

readCount--; // 7
if (readCount == 0) // 8

V(writeBlock); // 9
V(mutex); // 10

}
}

writer() {
while (true) {

<other computing>;
P(writeBlock); // 1
// Critical section

access(resource); // 2
V(writeBlock); // 3

}
}

First reader competes with writers
Last reader signals writers

resourceType *resource;
int readCount = 0;
semaphore mutex = 1;
semaphore writeBlock = 1;
fork(reader, 0);
fork(writer, 0);

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

26Synchronization

Operating Systems

First Solution
reader() {

while (true) {
<other computing>;
P(mutex); // 1

readCount++;
if (readCount == 1) // 2

P(writeBlock); // 3
V(mutex); // 4
// Critical section
access(resource); // 5
P(mutex); // 6

readCount--; // 7
if (readCount == 0) // 8

V(writeBlock); // 9
V(mutex); // 10

}
}

writer() {
while (true) {

<other computing>;
P(writeBlock); // 1
// Critical section

access(resource); // 2
V(writeBlock); // 3

}
}

Any writer must wait for all readers

Readers can starve writers

Updates can be delayed forever

May not be what we want

CS 3204 Operating Systems

©William D McQuain, January 2005 14

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

27Synchronization

Operating Systems

Writer Precedence v1
reader() {
while (true) {
<other computing>;

P(readBlock); // 1
P(mutex1); // 2
readCount++; // 3
if (readCount == 1) // 4
P(writeBlock); // 5

V(mutex1); // 6
V(readBlock); // 7

access(resource); // 8
P(mutex1); // 9
readCount--; // 10
if (readCount == 0) // 11
V(writeBlock); // 12

V(mutex1); // 13
}

}

writer() {
while (true) {
<other computing>;
P(mutex2); // 1
writeCount++; // 2
if (writeCount == 1) // 3
P(readBlock); // 4

V(mutex2); // 5
P(writeBlock); // 6
access(resource); // 7

V(writeBlock); // 8
P(mutex2); // 9
writeCount--; // 10
if (writeCount == 0) // 11
V(readBlock); // 12

V(mutex2); // 13
}

}

1

int readCount = 0, writeCount = 0;
semaphore mutex = 1, mutex2 = 1;
semaphore readBlock = 1, writeBlock = 1;

2

4

3

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

28Synchronization

Operating Systems

Writer Precedence v2
reader() {
while (true) {
<other computing>;
P(writePending); // 1
P(readBlock); // 2
P(mutex1); // 3
readCount++; // 4
if (readCount == 1) // 5
P(writeBlock); // 6

V(mutex1); // 7
V(readBlock); // 8

V(writePending); // 9
access(resource); // 10

P(mutex1); // 11
readCount--; // 12
if (readCount == 0) // 13
V(writeBlock); // 14

V(mutex1); // 15
}

}

writer() {
while (true) {
<other computing>;
P(mutex2); // 1
writeCount++; // 2
if (writeCount == 1) // 3
P(readBlock); // 4

V(mutex2); // 5
P(writeBlock); // 6
access(resource); // 7

V(writeBlock); // 8
P(mutex2) // 9
writeCount--; // 10
if (writeCount == 0) // 11
V(readBlock); // 12

V(mutex2); // 13
}

}

int readCount = 0, writeCount = 0;
semaphore mutex = 1, mutex2 = 1;
semaphore readBlock = 1, writeBlock = 1, writePending = 1;

CS 3204 Operating Systems

©William D McQuain, January 2005 15

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

29Synchronization

Operating Systems

The Sleepy Barber

Waiting Room

Entrance to Waiting
Room (sliding door)

Entrance to Barber’s
Room (sliding door)

Shop Exit

Barber can cut one person’s hair at a time
Other customers wait in a waiting room

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

30Synchronization

Operating Systems

Sleepy Barber (aka Bounded Buffer)
customer() {
while (true) {
customer = nextCustomer(); // 1
if (emptyChairs == 0) // 2
continue; // 3

P(chair); // 4
P(mutex); // 5
emptyChairs--; // 6
takeChair(customer); // 7

V(mutex); // 8
V(waitingCustomer); // 9

}
}

barber() {
while (true) {
P(waitingCustomer); // 1
P(mutex); // 2
emptyChairs++; // 3
takeCustomer(); // 4

V(mutex); // 5
V(chair); // 6

}
}

semaphore mutex = 1, chair = N, waitingCustomer = 0;
int emptyChairs = N;

CS 3204 Operating Systems

©William D McQuain, January 2005 16

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

31Synchronization

Operating Systems

Cigarette Smoker’s Problem
Three smokers (processes)

Each wish to use tobacco, papers, & matches
- only need the three resources periodically
- must have all at once

3 processes sharing 3 resources
- solvable, but difficult

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

32Synchronization

Operating Systems

Implementing Semaphores
Minimize effect on the I/O system

Processes are only blocked on their own critical sections (not critical sections that they
should not care about)

If disabling interrupts, be sure to bound the time they are disabled

CS 3204 Operating Systems

©William D McQuain, January 2005 17

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

33Synchronization

Operating Systems

enter() & exit()

class semaphore {
private:

int value;
public:

semaphore(int v = 1) { value = v;}

P(){
disableInterrupts();
while(value == 0) {

enableInterrupts();
disableInterrupts();

}
value--;
enableInterrupts();

}

V(){
disableInterrupts();
value++;
enableInterrupts();

}
};

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

34Synchronization

Operating Systems

Test and Set Instruction

FALSEm

Primary
Memory

…R3 …

Data
Register

CC
Register

(a) Before Executing TS

TRUEm

Primary
Memory

FALSER3 =0

Data
Register

CC
Register

(b) After Executing TS

TS(m): [Reg_i = memory[m]; memory[m] = TRUE;]

// returned value is specified in control code reg

CS 3204 Operating Systems

©William D McQuain, January 2005 18

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

35Synchronization

Operating Systems

Using the TS Instruction

bool s = false; // access control is "open"
. . .
while (TS(s)); // first caller gets in, but

// sets access control "closed"
<critical section>

s = false; // set access control to "open"
. . .

semaphore s = 1;
. . .
P(s);
<critical section>

V(s);
. . .

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

36Synchronization

Operating Systems

Implementing the General Semaphore
struct semaphore {

int value = <initial value>;
bool mutex = false;
bool hold = true;

};

shared struct semaphore s;

P(struct semaphore s) {
while (TS(s.mutex)) ;
s.value--;
if (s.value < 0) (

s.mutex = false;
while (TS(s.hold));

}
else

s.mutex = false;
}

V(struct semaphore s) {
while (TS(s.mutex));
s.value++;
if (s.value <= 0) (

while (!s.hold);
s.hold = false;

}
s.mutex = false;

}

CS 3204 Operating Systems

©William D McQuain, January 2005 19

Computer Science Dept Va Tech April 2005 ©2005 McQuain WD

37Synchronization

Operating Systems

Active vs Passive Semaphores

A process can dominate the semaphore
- performs V operation, but continues to execute
- performs another P operation before releasing the CPU
- called a passive implementation of V

Active implementation calls scheduler as part of the V operation.
- changes semantics of semaphore!
- cause people to rethink solutions

