
CS 3204 Operating Systems

©William D McQuain, January 2005 1

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

1Threads

Operating Systems

Processes and Threads

Resource ownership
- process includes a virtual address space to hold the process image
- usually now thought of as a process or task

Scheduling/execution
- follows an execution path that may be interleaved with other processes
- usually now referred to as a thread or lightweight process

These two characteristics are treated independently by the operating system

- an execution state (running, ready, etc.)
- saved thread context when not running
- has an execution stack
- some per-thread static storage for local variables
- access to the memory and resources of its process

- all threads of a process share this

Process traditionally considered as embodying two distinct characteristics:

Thread

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

2Threads

Operating Systems

Multithreading
definition: operating system supports

multiple threads of execution
within a single process

MS-DOS supports a single thread

UNIX supports multiple user processes but
only supports one thread per
process

(modern) Windows, Solaris, Linux, Mach,
and OS/2 support multiple
threads

CS 3204 Operating Systems

©William D McQuain, January 2005 2

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

3Threads

Operating Systems

Threads: Benefits and Issues
Takes less time to create a new thread than a new process

Less time to terminate a thread than a process

Less time to switch between two threads within the same process

Since threads within the same process share memory and files, they can communicate
with each other without invoking the kernel

Suspending a process involves suspending all threads of the process since all threads
share the same address space

Termination of a process, terminates all threads within the process

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

4Threads

Operating Systems

Threads in a Single-User Multiprocessing System
Foreground to background work

In a spreadsheet program, one thread could display menus and read user input while another
thread executes user commands and updates the spreadsheet.
Improves perceived speed of the application.

Asynchronous processing
A word processor may write its RAM buffer to disk once every minute, via a self-contained
thread that runs without further supervision from the rest of the process.

Speed of execution
One thread can compute results from one batch of data while another thread retrieves the next
batch of data from secondary storage. The threads may achieve simultaneous execution on a
multiprocessor machine, but even on a uniprocessor system one thread may be able to run
while the other is blocked on I/O, improving overall speed of execution.

Modular program structure

CS 3204 Operating Systems

©William D McQuain, January 2005 3

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

5Threads

Operating Systems

Thread States
States associated with a change in thread state:

Spawn
Spawn another thread

Block
Unblock
Finish

Deallocate register context and stacks

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

6Threads

Operating Systems

RPC Using Single Thread
Remote procedure call (RPC) is a technique by which two or more programs, typically
executing on different machines, interact by using procedure call/return syntax and
semantics.

Using a single thread of execution, the calling
program must wait for a response from each
server before proceeding.

Using a separate thread for each RPC, the
second call can proceed while the first thread is
waiting for a response.

CS 3204 Operating Systems

©William D McQuain, January 2005 4

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

7Threads

Operating Systems

Multithreading on a Uniprocessor

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

8Threads

Operating Systems

User-Level Threads
All thread management is done by the application

The kernel is not aware of the existence of threads

Can be supplied by a user-level library installed on
top of the operating system (pthread library).

Thread switching is done within the threads library, so
no user-kernel-user mode switches are involved.
Thread scheduling logic is largely embedded within
the application program, and so can be customized.
Portability.

OS system calls are typically blocking, so the entire
process will be blocked, not just the calling thread.
OS kernel assigns the process to a single processor,
and it cannot then take advantage of multiple
processors if they are available.

CS 3204 Operating Systems

©William D McQuain, January 2005 5

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

9Threads

Operating Systems

Kernel-Level Threads
Kernel maintains context information for the process and the threads

Scheduling is done on a thread basis

Windows is an example of this approach

Thread switching is done by the OS kernel, so each
thread switch will require a user-kernel-user mode
switch sequence.
Less portability.

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

10Threads

Operating Systems

VAX Running UNIX-Like Operating System

KLTs seem to provide an order-of-magnitude speedup versus single-threaded process.
ULTs seem to provide a similar speedup versus KLTs.
However, whether this holds true in practice depends very much on the specific nature of
the application program.

null fork pure overhead of forking a process/thread
signal wait overhead of synchronizing two processes/threads together

CS 3204 Operating Systems

©William D McQuain, January 2005 6

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

11Threads

Operating Systems

Combined Approaches
Example is Solaris

Thread creation done in the user space

Bulk of scheduling and synchronization of threads occurs within
application

Would seem to potentially offer the advantages of both ULTs and
KLTs

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

12Threads

Operating Systems

Relationship Between Threads and Processes

CS 3204 Operating Systems

©William D McQuain, January 2005 7

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

13Threads

Operating Systems

Categories of Computer Systems
Single Instruction Single Data (SISD) stream

Single processor executes a single
instruction stream to operate on data
stored in a single memory

Single Instruction Multiple Data (SIMD) stream
Each instruction is executed on a different

set of data by the different processors

Multiple Instruction Single Data (MISD) stream
A sequence of data is transmitted to a set of

processors, each of which executes a different
instruction sequence. Never implemented

Multiple Instruction Multiple Data (MIMD)
A set of processors simultaneously execute

different instruction sequences on different
data sets

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

14Threads

Operating Systems

Symmetric Multiprocessing
Kernel can execute on any processor

Typically each processor does self-scheduling form the pool of available process or
threads

CS 3204 Operating Systems

©William D McQuain, January 2005 8

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

15Threads

Operating Systems

Multiprocessor OS Design Considerations
Simultaneous concurrent processes or threads

- kernel routines must be reentrant
- deadlock and invalid system states must be avoided

Scheduling
- may be performed by any processor, so conflicts must be avoided
- with KLTs, the threads of a single process may be scheduled across multiple processors

Synchronization
- may share resources, like address space, among collection of active threads
- must be able to enforce mutual exclusion and event ordering

Memory management
- multi-ported memories to support flexible scheduling
- management schemes must be managed in a cross-processor manner

Reliability and fault tolerance
- failures of single processors should not disable entire system

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

16Threads

Operating Systems

Microkernel Architecture
Small operating system core
Contains only essential core operating systems functions
Many services traditionally included in the operating system are now external subsystems

Device drivers
File systems
Virtual memory manager
Windowing system
Security services

CS 3204 Operating Systems

©William D McQuain, January 2005 9

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

17Threads

Operating Systems

Benefits of a Microkernel Organization
Uniform interface on request made by a process

- don’t distinguish between kernel-level and user-level services
- all services are provided by means of message passing

Extensibility
- allows the addition of new services, affecting only a subset of the system

Flexibility
- new features added, existing features can be subtracted
- users can select among alternate versions of services

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

18Threads

Operating Systems

Benefits of a Microkernel Organization
Portability

- changes needed to port the system to a new processor are most likely made in the microkernel,
not in the other services

Reliability
- modular design
- small microkernel can be rigorously tested

Distributed system support
- message are sent without knowing what the target machine is

Object-oriented operating system
- components are objects with clearly defined interfaces that can be interconnected to form

software

What’s the catch?
- performance (relative to layered designs)
- continued refinement may close the gap

CS 3204 Operating Systems

©William D McQuain, January 2005 10

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

19Threads

Operating Systems

Microkernel Design
Microkernel must contain the functions that depend directly on the hardware, and the
functions needed to support the servers and applications operating in user mode.

Low-level memory management
- mapping each virtual page to a physical page frame
- inter-process protection, page replacement logic can be external to the kernel (e.g., Mach)

Interprocess communication
I/O and interrupt management

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

20Threads

Operating Systems

Windows Processes
Implemented as objects
An executable process may contain one or more threads
Both processes and thread objects have built-in synchronization capabilities

CS 3204 Operating Systems

©William D McQuain, January 2005 11

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

21Threads

Operating Systems

Windows Process and Thread Objects

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

22Threads

Operating Systems

Windows 2000 Thread States

CS 3204 Operating Systems

©William D McQuain, January 2005 12

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

23Threads

Operating Systems

Linux Task Data Structure
State
Scheduling information
Identifiers
Interprocess communication
Links
Times and timers
File system
Address space
Processor-specific context

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

24Threads

Operating Systems

Linux States of a Process
Running
Interruptable
Uninterruptable
Stopped
Zombie

