
CS 3204 Operating Systems

©William D McQuain, January 2005 1

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

1Scheduling Analysis

Operating Systems

Aim of Scheduling

Assign processes to be executed by the processor(s)

Response time

Throughput

Processor efficiency

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

2Scheduling Analysis

Operating Systems

General Queuing Diagram

CS 3204 Operating Systems

©William D McQuain, January 2005 2

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

3Scheduling Analysis

Operating Systems

Priorities
Scheduler will always choose a process of higher priority over one of lower priority
Have multiple ready queues to represent each level of priority
Lower-priority may suffer starvation

Allow a process to change its priority based on its age or execution history

Omits
blocked/suspended

queues for simplicity.

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

4Scheduling Analysis

Operating Systems

First-Come-First-Served (FCFS)
Each process joins the Ready queue
When the current process ceases to execute, the oldest process in the Ready queue is

selected

A short process may have to wait a very long time before it can execute
Favors CPU-bound processes

I/O processes have to wait until CPU-bound process completes

CS 3204 Operating Systems

©William D McQuain, January 2005 3

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

5Scheduling Analysis

Operating Systems

Round-Robin
Uses preemption based on a clock
An amount of time is determined that allows each process to use the processor

for that length of time

Clock interrupt is generated at periodic intervals
When an interrupt occurs, the currently running process is placed in the read queue

Next ready job is selected
Known as time slicing

Principal design issue is the size of the quantum

Favors CPU-bound processes over I/O-bound processes

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

6Scheduling Analysis

Operating Systems

Effect of Quantum Size
Too-short quantum leads to excessive percentage of time
being spend handling process switching.

Quantum slightly larger than the time for a typical
interaction or process function.

Quantum shorter than that
means that most processes
will take two or more quanta
to finish, hurting interactive
response time.

CS 3204 Operating Systems

©William D McQuain, January 2005 4

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

7Scheduling Analysis

Operating Systems

Virtual Round-Robin Queuing Diagram
VRR attempts to improve relative handling
of I/O- and CPU-bound processes.

When pending I/O operation is completed,
the waiting process is moved to an
auxiliary queue instead of the Ready queue.

On a process switch, the dispatcher will
favor processes in the auxiliary queue over
those in the Ready queue.

But, a process selected from the auxiliary
queue will not receive a full quantum.
Instead, it gets a quantum minus the time it
has spent running since it was last selected
from the main Ready queue.

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

8Scheduling Analysis

Operating Systems

Shortest Process Next
Batch policy
Process with shortest expected service time is selected next
Short process jumps ahead of longer processes

Predictability of longer processes is reduced

If estimated time for process not correct, the operating system may abort it
- history of batch jobs used to estimate their service times
- for interactive processes…

Possibility of starvation for longer processes

CS 3204 Operating Systems

©William D McQuain, January 2005 5

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

9Scheduling Analysis

Operating Systems

Predicting Service Time
The service time for an interactive process can be predicted statistically.

The burst time for an interactive process is the processor execution time the process uses
during one period in the Running state. A simple predictor for the next burst time would
be given by:

However, we can rewrite this formula to avoid recalculating the sum:

Obviously, this is only an estimate, and assumes a very simple relationship between past
and future behavior. In particular, it gives the same weight to recent and far-past burst
times.

Intuitively we might expect that recent values would be better predictors, leavened with
older values.

∑
=

+ =
n

k
kn T

n
S

1
1

1

nnn S
n

nT
n

S 11
1

−
+=+

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

10Scheduling Analysis

Operating Systems

Exponential Averaging
A (perhaps) better predictor can be obtained by using a weighted average:

where α is a constant weighting factor such that 0 < α < 1. If we expand this formula
recursively, we obtain

The coefficients of the successive terms are
decreasing, and so the older terms are
given less weight:

nnn STS)1(1 αα −+=+

12
2

11)1()1()1(TTTTS n
nnnn αααααα −++−+−+= −−+ L

CS 3204 Operating Systems

©William D McQuain, January 2005 6

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

11Scheduling Analysis

Operating Systems

Example

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

12Scheduling Analysis

Operating Systems

Shortest Remaining Time
Preemptive (multiprogramming) version of shortest process next policy

As with SPN, must estimate processing time

CS 3204 Operating Systems

©William D McQuain, January 2005 7

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

13Scheduling Analysis

Operating Systems

Highest Response Ratio Next (HRRN)
Define the response ratio for a process by

where w is the time the process has spent waiting for the processor and s is the expected
service time for the process.

Choose next process with the greatest ratio

s
swR +

=

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

14Scheduling Analysis

Operating Systems

Scheduling via Feedback
If we can’t know the time remaining, penalize jobs that have been running longer:

- preemptive scheduling via quantum timer
- dynamic priorities
- process starts in level 0 Ready queue
- after each preemption, process is demoted to next level queue of Ready state
- process just cycles once it reaches the lowest level

Rewards shorter processes because they only
compete with other processes that haven’t
been running very long.

Problem: long processes may starve.

One solution: give processes in lower levels
longer quanta
Another: gradually promote processes
upward after a certain interval in lowest level

CS 3204 Operating Systems

©William D McQuain, January 2005 8

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

15Scheduling Analysis

Operating Systems

Summary of Scheduling Policies

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

16Scheduling Analysis

Operating Systems

Simple Queuing Analysis
How can we make projections regarding the performance of a system?

If we have performance information relating to existing load, and some basis for
estimating future load, we have several options.

We will consider how to develop an analytical model based on queuing theory.

First consider the single-server queue:

CS 3204 Operating Systems

©William D McQuain, January 2005 9

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

17Scheduling Analysis

Operating Systems

Queuing Theory Notation
λ arrival rate; mean number of arrivals per second

Ts mean service time; counts time served but excludes wait time

ρ utilization; fraction of time server is busy

w mean number of items waiting to be served

Tw mean waiting time; excludes items with wait time 0 and items that must wait

r mean number of items resident in system (waiting and being served)

Tr mean residence time; time an items spends in the system waiting and being served

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

18Scheduling Analysis

Operating Systems

Assumptions and Observations
We assume:

- queue has infinite capacity
- no item is ever lost from the system
- all items eventually finish
- infinite population of items that will eventually arrive
- when the server becomes free, dispatcher uses some well-defined policy to select

next item for service

Note:
- as the arrival rate increases, the utilization also increases
- as utilization approaches 1, the queue becomes congested with waiting items
- the arrival rate equals the departure rate over the long term
- the maximum arrival rate that can be handled by the system is λMAX = 1/Ts

CS 3204 Operating Systems

©William D McQuain, January 2005 10

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

19Scheduling Analysis

Operating Systems

Case Study
Assume a two-priority system in which:

- priority 1 items are processed before priority 2 items
- FIFO dispatching is used for items of equal priority
- no item is interrupted while being served
- items arrive according to a Poisson distribution

Then we have a few basic formulas: 21 λλλ +=

222111 ; ss TT λρλρ ==

21 ρρρ +=

2
2

1
1

sss TTT
λ
λ

λ
λ

+=

2
2

1
1

rrr TTT
λ
λ

λ
λ

+=

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

20Scheduling Analysis

Operating Systems

Normalized Response Times
Suppose we have a system that uses a two-priority scheme where priorities are assigned
based on service time.
With equal arrival rates for short and long processes, and long processes taking 5 times
longer than short ones, we have (theoretically):

Overall, using priorities this
way makes the most
improvement in the
normalized response times if
scheduling also uses
preemption, but there’s not
much difference.

CS 3204 Operating Systems

©William D McQuain, January 2005 11

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

21Scheduling Analysis

Operating Systems

Effect on Shorter Processes
The effect on shorter processes is, however, fairly dramatic, especially if preemptive
scheduling is used:

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

22Scheduling Analysis

Operating Systems

Effect on Longer Processes
The effect on longer processes is, as you should expect, slight, but their performance is
degraded:

CS 3204 Operating Systems

©William D McQuain, January 2005 12

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

23Scheduling Analysis

Operating Systems

Simulated Turnaround Time
Theoretical analysis can be supplemented by discrete-event simulations.

Neither is entirely trustworthy, but the combination may justify confidence…

Simulating 50,000
processes with an
arrival rate λ = 0.8 and
an average service time
TS = 1, and a few other
assumptions described
in Stallings, we might
obtain:

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

24Scheduling Analysis

Operating Systems

Simulated Waiting Time
From the same simulation:

CS 3204 Operating Systems

©William D McQuain, January 2005 13

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

25Scheduling Analysis

Operating Systems

Fair-Share Scheduling

User’s application runs as a
collection of processes (threads)

User is concerned about the
performance of the application

Need to make scheduling decisions
based on process sets

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

26Scheduling Analysis

Operating Systems

Traditional UNIX Scheduling
Multilevel feedback using round robin within each of the priority queues

If a running process does not block or complete within 1 second, it is preempted

Priorities are recomputed once per second

Base priority divides all processes into fixed bands of priority levels

CS 3204 Operating Systems

©William D McQuain, January 2005 14

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

27Scheduling Analysis

Operating Systems

Bands

Decreasing order of priority
Swapper
Block I/O device control
File manipulation
Character I/O device control
User processes

The use of execution history favors I/O-bound
processes and penalizes CPU-bound processes,
which should improve overall efficiency.

Coupled with round-robin preemption, this
achieves good general performance.

