Aim of Scheduling		Scheduling Ana	lysis	1
Assign processes to be executed	by the processor(s)			
Response time				
Throughput				
Processor efficiency				
omputer Science Dept Va Tech September 2005	Operating Systems	©.	2005 McQuain	WD

Round-Robin	Scheduling Analysis	5
Uses preemption based on a clock An amount of time is determined that allows each proce for that length of time	ess to use the processor	
Round-Robin (RR), $q = 1$ C D E		
Clock interrupt is generated at periodic intervals When an interrupt occurs, the currently running process Next ready job is selected Known as time slicing	s is placed in the read queue	
Principal design issue is the size of the quantum		
Favors CPU-bound processes over I/O-bound processes	5	

	Shortest Proc	ess Next		Scheduling Analysis	8
	Batch policy				
	Process with short	est expected servi	ce time is selected next		
	Short process jump	os ahead of longer	processes		
	Shortest Process Next (SPN)	A B I I C I I I I I I I I I I I I I I I I			
	Predictability of lo If estimated time f - history of bat - for interactive Possibility of stary	inger processes is for process not cor ch jobs used to est e processes ration for longer p	reduced rect, the operating system timate their service times rocesses	may abort it	
C	omputer Science Dept Va Tech Septem	ber 2005	Operating Systems	©2005 McQua	iin WD

Predicting Service Time

er Science Dept Va Tech September 2005

9

The service time for an interactive process can be predicted statistically.

The *burst time* for an interactive process is the processor execution time the process uses during one period in the Running state. A simple predictor for the next burst time would be given by: 1 n

$$S_{n+1} = \frac{1}{n} \sum_{k=1}^{n} T_k$$

However, we can rewrite this formula to avoid recalculating the sum:

$$S_{n+1} = \frac{1}{n}T_n + \frac{n-1}{n}S_n$$

Obviously, this is only an estimate, and assumes a very simple relationship between past and future behavior. In particular, it gives the same weight to recent and far-past burst times.

Intuitively we might expect that recent values would be better predictors, leavened with older values.

Operating Systems

· · · · · ·				-			
	Function	Mode	Throughput	Time	Overhead	Processes	Starvatio
FCFS	max[w]	Nonpreemptive	Not emphasized	May be high, especially if there is a large variance in process execution times	Minimum	Penalizes short processes; penalizes I/O bound processes	No
Round Robin	constant	Preemptive (at time quantum)	May be low if quantum is too small	Provides good response time for short processes	Minimum	Fair treatment	No
SPN	min[s]	Nonpreemptive	High	Provides good response time for short processes	Can be high	Penalizes long processes	Possible
SRT	$\min[s - e]$	Preemptive (at arrival)	High	Provides good response time	Can be high	Penalizes long processes	Possible
HRRN	$\max\left(\frac{w+s}{s}\right)$	Nonpreemptive	High	Provides good response time	Can be high	Good balance	No
Feedback	(see text)	Preemptive (at time quantum)	Not emphasized	Not emphasized	Can be high	May favor I/O bound processes	Possible
W = C = S =	time spent waitin time spent in exe total service time	ng ecution so far e required by the p	rocess, including	e			

