
1

CS 3204
Operating Systems

Godmar Back

Lecture 9

2/6/2006CS 3204 Spring 2006 2

Announcements

• Project 1 is due Feb 27, 11:59pm
– Not a whole lot of time, find a team now.

• *nix Crash Course offered: Feb 9, 8:30pm
• Project 1 Help Session

– 1) 7pm MCB 129
– 2) TBA later this week

• Reading: Section 5.1 through 5.4

Concurrency & Synchronization

2/6/2006CS 3204 Spring 2006 4

pthread_mutex example
/* Define a mutex and initialize it. */
static pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

static int counter = 0; /* A global variable to protect. */

/* Function executed by each thread. */
static void *
increment(void *_)
{

int i;
for (i = 0; i < 1000000; i++) {

pthread_mutex_lock(&lock);
counter++;
pthread_mutex_unlock(&lock);

}
}

movl counter, %eax
incl %eax
movl %eax, counter

2/6/2006CS 3204 Spring 2006 5

A Race Condition

Thread 1
movl counter, %eax

incl %eax
movl %eax, counter

Thread 2

movl counter,%eax
incl %eax

movl %eax,counter

IRQ
OS decides to
context switch

%eax – Thread 1’s copy
%eax – Thread 2’s copy
counter – global variable, shared

IRQ

tim
e

IRQ

0
0

1
1

1

1
Final result: counter is 1, should be 2
Assume counter == 0 initially

2/6/2006CS 3204 Spring 2006 6

Race Conditions
• Definition: two or more threads read and write a shared

variable, and final result depends on the order of the
execution of those threads

• Usually timing-dependent and intermittent
– Hard to debug

• Not a race condition if all execution orderings lead to
same result
– Chances are high that you misjudge this

• How to deal with race conditions:
– Ignore (!?)

• Can be ok if final result does not need to be accurate
• Never an option in CS 3204

– Don’t share: duplicate or partition state
– Avoid “bad interleavings” that can lead to wrong result

2

2/6/2006CS 3204 Spring 2006 7

Not Sharing: Duplication or
Partitioning

• Undisputedly best way to avoid race conditions
– Always consider it first
– Usually faster than alternative of sharing + protecting
– But duplicating has space cost; partitioning can have

management cost
– Sometimes must share (B depends on A’s result)

• Examples:
– Each thread has its own counter (then sum counters up after

join())
– Every CPU has its own ready queue
– Each thread has its own memory region from which to allocate

objects
• Truly ingenious solutions to concurrency involve a way to

partition things people originally thought you couldn’t

2/6/2006CS 3204 Spring 2006 8

Aside: Thread-Local Storage
• A concept that helps to avoid race conditions by giving

each thread a copy of a certain piece of state
• Recall:

– All local variables are already thread-local
• But their extent is only one function invocation

– All function arguments are also thread-local
• But must pass them along call-chain

• TLS creates variables of which there’s a separate value
for each thread.

• In PThreads/C (compiler or library-supported)
– Dynamic: pthread_create_key(), pthread_get_key(),

pthread_set_key()
• E.g. myvalue = keytable(key_a)→get(pthread_self());

– Static: using __thread storage class
• E.g.: __thread int x;

• Java: java.lang.ThreadLocal
In Pintos:
Add member to struct thread

2/6/2006CS 3204 Spring 2006 9

Race Condition & Execution Order

• Prevent race conditions by imposing
constraints on execution order so the final
result is the same regardless of actual
execution order
– That is, exclude “bad” interleavings
– Specifically: disallow other threads to start

updating shared variables while one thread is
in the middle of doing so; make those updates
atomic.

2/6/2006CS 3204 Spring 2006 10

Atomicity & Critical Sections

• Atomic: indivisible
• Certain machine instructions are atomic
• Critical Section

– A synchronization technique to ensure atomic
execution of a segment of code

• Requires entry() and exit() operations
pthread_mutex_lock(&lock); /* entry() */
counter++;
pthread_mutex_unlock(&lock); /* exit() */

2/6/2006CS 3204 Spring 2006 11

Critical Sections (cont’d)
• Critical Section Problem also known as mutual exclusion

problem
• Only one thread can be inside critical section; others

attempting to enter CS must wait until thread that’s
inside CS leaves it.

• Note: different from “all-or-nothing” meaning atomic has
in database theory & practice
– Does not necessarily imply that thread executes section without

interruption, or even that thread completes section – just that
other threads can’t enter it while one thread is inside it

• Solutions can be entirely software, or entirely hardware
– Usually combined
– Different solutions for uniprocessor vs multiprocessor scenarios

2/6/2006CS 3204 Spring 2006 12

Disabling Interrupts

• All asynchronous
context switches start
with interrupts
– So disable interrupts

to avoid them!

intr_level old = intr_disable();
/* modify shared data */
intr_set_level(old);

intr_level old = intr_disable();
/* modify shared data */
intr_set_level(old);

void intr_set_level(intr_level to)
{

if (to == INTR_ON)
intr_enable();

else
intr_disable();

}

void intr_set_level(intr_level to)
{

if (to == INTR_ON)
intr_enable();

else
intr_disable();

}

3

2/6/2006CS 3204 Spring 2006 13

Avoiding context switches:
Variation (1)

• Variation of
“disabling-interrupts”
technique
– That doesn’t actually

disable interrupts
– If IRQ happens, ignore

it
• Assumes writes to

“taking_interrupts” are
atomic and sequential
wrt reads

taking_interrupts = false;
/* modify shared data */
taking_interrupts = true;

taking_interrupts = false;
/* modify shared data */
taking_interrupts = true;

intr_entry()
{

if (!taking_interrupts)
iret

intr_handle();
}

intr_entry()
{

if (!taking_interrupts)
iret

intr_handle();
}

2/6/2006CS 3204 Spring 2006 14

Avoiding context switches:
Variation (2)

• Code on previous slide
could lose interrupts
– Remember pending

interrupts and check when
leaving critical section

• This technique can be
used with Unix signal
handlers (which are like
“interrupts” sent to a Unix
process)
– but tricky to get right

taking_interrupts = false;
/* modify shared data */
if (irq_pending)

intr_handle();
taking_interrupts = true;

taking_interrupts = false;
/* modify shared data */
if (irq_pending)

intr_handle();
taking_interrupts = true;

intr_entry()
{

if (!taking_interrupts) {
irq_pending = true;
iret

}
intr_handle();

}

intr_entry()
{

if (!taking_interrupts) {
irq_pending = true;
iret

}
intr_handle();

}

2/6/2006CS 3204 Spring 2006 15

Avoiding context switches:
Variation (3)

• Instead of setting flag,
have irq handler
examine PC where
thread was
interrupted

• See Bershad ’92:
Fast Mutual Exclusion
on Uniprocessors

critical_section_start:
/* modify shared data */

critical_section_end:

critical_section_start:
/* modify shared data */

critical_section_end:

intr_entry()
{

if (PC in (critical_section_start,
critical_end_end)) {

iret
}
intr_handle();

}

intr_entry()
{

if (PC in (critical_section_start,
critical_end_end)) {

iret
}
intr_handle();

}

2/6/2006CS 3204 Spring 2006 16

Disabling Interrupts: Summary
• (this applies to all variations)
• Sledgehammer solution
• Infinite loop means machine locks up
• Use this to protect data structures from concurrent

access by interrupt handlers
– Keep sections of code where irqs are disabled minimal (nothing

else can happen until irqs are reenabled – latency penalty!)
– If you block (give up CPU) mutual exclusion with other threads is

not guaranteed
• Any function that transitively calls thread_block() may block

• Want something more fine-grained
– Key insight: don’t exclude everybody else, only those contending

for the same critical section

