
1

CS 3204
Operating Systems

Godmar Back

Lecture 6

1/30/2006CS 3204 Spring 2006 2

Announcements

• Posted stack.cc example on website
• Project 0 is due Feb 1, 11:59pm
• This project is done individually
• Curator instructions will be posted on

website today
– Vijay needs to upload class list

1/30/2006CS 3204 Spring 2006 3

Overview for today

• Finish
– How does OS execute processes?
– How do kernel & processes interact
– How does kernel switch between processes
– Implementing Processes (PCB)

• Process States
• Next:

– Scheduling of threads
– Synchronization of threads

1/30/2006CS 3204 Spring 2006 4

Pintos Kernel Stack
4 kB +---------------------------------+

| kernel stack |
| | |
| | |
| V |
| grows downward |
| ... |
| ... |
| switch_threads’s |
| stack frame <---+ |
+----------------------+----------+	
magic	
:	
stack---+	
name	
status	

0 kB +---------------------------------+

• One page of
memory captures
a process’s kernel
stack + PCB

• Don’t allocate
large objects on
the stack:
void
kernel_function(void)
{

char buf[4096]; // DON’T
// KERNEL STACK OVERFLOW
// guaranteed

}

1/30/2006CS 3204 Spring 2006 5

Pintos Context Switch
switch_threads:

Save caller's register state.
Note that the SVR4 ABI allows us to destroy %eax, %ecx, %edx,
but requires us to preserve %ebx, %ebp, %esi, %edi.
pushl %ebx; pushl %ebp; pushl %esi; pushl %edi

Get offsetof (struct thread, stack).
mov thread_stack_ofs, %edx

Save current stack pointer to old thread's stack.
movl SWITCH_CUR(%esp), %eax
movl %esp, (%eax,%edx,1)

Restore stack pointer from new thread's stack.
movl SWITCH_NEXT(%esp), %ecx
movl (%ecx,%edx,1), %esp

Restore caller's register state.
popl %edi; popl %esi; popl %ebp; popl %ebx
ret

Stack
…

next
cur

&retlabelesp

Stack
…

next
cur

&retlabel
ebx
ebp
esi
ediesp

#define SWITCH_CUR 20
#define SWITCH_NEXT 24

#define SWITCH_CUR 20
#define SWITCH_NEXT 24

cur->stack = esp

esp = next->stack

// switch_thread (struct thread *cur, struct thread *next)

1/30/2006CS 3204 Spring 2006 6

External Interrupts & Context Switches
intr_entry:

/* Save caller's registers. */
pushl %ds; pushl %es; pushl %fs; pushl %gs; pushal

/* Set up kernel environment. */
cld
mov $SEL_KDSEG, %eax /* Initialize segment registers. */
mov %eax, %ds; mov %eax, %es
leal 56(%esp), %ebp /* Set up frame pointer. */

pushl %esp
call intr_handler /* Call interrupt handler. Context switch happens in there*/
addl $4, %esp
/* FALL THROUGH */

intr_exit: /* Separate entry for initial user program start */
/* Restore caller's registers. */
popal; popl %gs; popl %fs; popl %es; popl %ds
iret /* Return to current process, or to new process after context switch. */

2

1/30/2006CS 3204 Spring 2006 7

Context Switching: Summary

• Context switch means to save the current and
restore next process’s execution context

• Context Switch != Mode Switch
– Although mode switch often precedes context switch

• Asynchronous context switch happens in
interrupt handler
– Usually last thing before leaving handler

• Have ignored so far when to context switch &
why → next

1/30/2006CS 3204 Spring 2006 8

Process States

• Only 1 process (per CPU) can be in RUNNING state

RUNNINGRUNNING

READYREADYBLOCKEDBLOCKED

Process
must wait
for event

Event arrived

Scheduler
picks process

Process
preempted

1/30/2006CS 3204 Spring 2006 9

Process Lists

• All ready processes are inserted in a ready list
– Running process typically not kept on ready list
– Can have multiple ready lists, e.g., one for each

priority class
• All blocked processes are kept on lists

– List usually associated with event that caused
blocking

• A lot of scheduling involves clever ways of
manipulating lists

1/30/2006CS 3204 Spring 2006 10

Process Events

• What’s an event?
– External event:

• disk controller completes sector transfer to memory
• network controller signals that new packet has been received
• clock has advanced to a predetermined time

– Event that arise from process interaction:
• a resource that was previously held by some process is now

available (e.g., lock_release)
• an explicit signal is sent to a process (e.g., cond_signal)
• a process has exited or was killed

