
1

CS 3204
Operating Systems

Godmar Back

Lecture 5

1/27/2006CS 3204 Spring 2006 2

Announcements

• Posted stack.cc example on website
• Project 0 is due Feb 1, 11:59pm
• This project is done individually
• Curator instructions will be posted on

website

1/27/2006CS 3204 Spring 2006 3

Overview

• Definitions
• How does OS execute processes?

– How do kernel & processes interact
– How does kernel switch between processes

• Implementing Processes
• Next:

– Scheduling of threads
– Synchronization of threads

1/27/2006CS 3204 Spring 2006 4

Context Switching

Process 1

Process 2

Kernel

user mode

kernel mode

Timer interrupt: P1 is preempted,
context switch to P2

Timer interrupt: P1 is preempted,
context switch to P2

System call: (trap):
P2 starts I/O operation, blocks
context switch to process 1

System call: (trap):
P2 starts I/O operation, blocks
context switch to process 1

I/O device interrupt:
P2’s I/O complete
switch back to P2

I/O device interrupt:
P2’s I/O complete
switch back to P2

Timer interrupt: P2 still has
time left, no context switch

Timer interrupt: P2 still has
time left, no context switch

1/27/2006CS 3204 Spring 2006 5

Switching Procedures

• Inside kernel, context switch is implemented in
schedule() function called from C code
– Called when kernel decides to context switch

• Must understand how to switch procedures
(call/return)

• Dictated by procedure calling conventions
– Architecture-specific
– Part of ABI (application binary interface),

implemented by compiler
– Pintos uses SVR4 ABI

1/27/2006CS 3204 Spring 2006 6

x86 Calling Conventions
• Caller saves caller-saved

registers as needed
• Caller pushes arguments,

right-to-left on stack via push
assembly instruction

• Caller executes CALL
instruction: save address of
next instruction & jump to
callee

• Caller resumes: pop
arguments off the stack

• Caller restores caller-saved
registers, if any

• Callee executes:
– Saves callee-saved registers

if they’ll be destroyed
– Puts return value (if any) in

eax
• Callee returns via RET

instruction: pop return address
from stack & jump to it

2

1/27/2006CS 3204 Spring 2006 7

Example
int globalvar;

int
callee(int a, int b)
{

return a + b;
}

int
caller(void)
{

return callee(5, globalvar);
}

callee:
pushl %ebp
movl %esp, %ebp
movl 12(%ebp), %eax
addl 8(%ebp), %eax
leave
ret

caller:
pushl %ebp
movl %esp, %ebp
pushl globalvar
pushl $5
call callee
popl %edx
popl %ecx
leave
ret

1/27/2006CS 3204 Spring 2006 8

Pintos Context Switch (1)

• threads/thread.c, threads/switch.S

static void
schedule (void)
{
struct thread *cur = running_thread ();
struct thread *next = next_thread_to_run ();
struct thread *prev = NULL;
if (cur != next)
prev = switch_threads (cur, next);

retlabel: /* not in actual code */
schedule_tail (prev);

}

uint32_t thread_stack_ofs = offsetof (struct thread, stack);

Stack
…

next
cur

&retlabelesp

1/27/2006CS 3204 Spring 2006 9

Pintos Context Switch (2)
switch_threads:

Save caller's register state.
Note that the SVR4 ABI allows us to destroy %eax, %ecx, %edx,
but requires us to preserve %ebx, %ebp, %esi, %edi.
pushl %ebx; pushl %ebp; pushl %esi; pushl %edi

Get offsetof (struct thread, stack).
mov thread_stack_ofs, %edx

Save current stack pointer to old thread's stack.
movl SWITCH_CUR(%esp), %eax
movl %esp, (%eax,%edx,1)

Restore stack pointer from new thread's stack.
movl SWITCH_NEXT(%esp), %ecx
movl (%ecx,%edx,1), %esp

Restore caller's register state.
popl %edi; popl %esi; popl %ebp; popl %ebx
ret

Stack
…

next
cur

&retlabelesp

Stack
…

next
cur

&retlabel
ebx
ebp
esi
ediesp

#define SWITCH_CUR 20
#define SWITCH_NEXT 24

#define SWITCH_CUR 20
#define SWITCH_NEXT 24

1/27/2006CS 3204 Spring 2006 10

Famous Quote For The Day

• Source: Dennis Ritchie, Unix V6 slp.c
(context-switching code) as per The Unix
Heritage Society (tuhs.org)

If the new process paused because it was swapped out,
set the stack level to the last call to savu(u_ssav). This
means that the return which is executed immediately
after the call to aretu actually returns from the last
routine which did the savu.

You are not expected to understand this.

1/27/2006CS 3204 Spring 2006 11

Pintos Context Switch (3)
• All state is stored on outgoing thread’s stack, and

restored from incoming thread’s stack
– Each thread has a 4KB page for its stack
– Called “kernel stack” because it’s only used when thread

executes in kernel mode
– Mode switch automatically switches to kernel stack

• x86 does this in hardware, curiously.
• switch_threads assumes that the thread that’s switched

in was suspended in switch_threads as well.
– Must fake that environment when switching to a thread for the

first time.
• Aside: none of the thread switching code uses privileged

instructions:
– that’s what makes user-level threads (ULT) possible

1/27/2006CS 3204 Spring 2006 12

Pintos Kernel Stack
4 kB +---------------------------------+

| kernel stack |
| | |
| | |
| V |
| grows downward |
| ... |
| ... |
| switch_threads’s |
| stack frame <---+ |
+----------------------+----------+	
magic	
:	
stack---+	
name	
status	

0 kB +---------------------------------+

• One page of
memory captures
a process’s kernel
stack + PCB

• Don’t allocate
large objects on
the stack:
void
kernel_function(void)
{

char buf[4096]; // DON’T
// KERNEL STACK OVERFLOW
// guaranteed

}

3

1/27/2006CS 3204 Spring 2006 13

Context Switching: Summary

• Context switch means to save the current and
restore next process’s execution context

• Context Switch != Mode Switch
– Although mode switch often precedes context switch

• Asynchronous context switch happens in
interrupt handler
– Usually last thing before leaving handler

• Have ignored so far when to context switch &
why → next

Intermezzo

Just enough on concurrency to
get through Project 0

A lot more later.

1/27/2006CS 3204 Spring 2006 15

Concurrency

• Access to shared resources must be mediated
– Specifically shared (non-stack) variables

• Will hear a lot more about this
• For now, simplest way to protection is mutual

exclusion via locks (aka mutexes)
• For Project 0, concurrency is produced by using

PThreads (POSIX Threads), so must use
PThread’s mutexes.
– Just an API, idea is the same everywhere

1/27/2006CS 3204 Spring 2006 16

pthread_mutex example
/* Define a mutex and initialize it. */
static pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

static int counter = 0; /* A global variable to protect. */

/* Function executed by each thread. */
static void *
increment(void *_)
{

int i;
for (i = 0; i < 1000000; i++) {

pthread_mutex_lock(&lock);
counter++;
pthread_mutex_unlock(&lock);

}
}

