
1

CS 3204
Operating Systems

Godmar Back

Lecture 4

1/25/2006CS 3204 Spring 2006 2

Announcements

• Project 0 is due Feb 1, 11:59pm
• This project is done individually
• Curator instructions will be posted on

website

Processes & Threads

1/25/2006CS 3204 Spring 2006 4

Overview

• Definitions
• How does OS execute processes?

– How do kernel & processes interact
– How does kernel switch between processes
– How do interrupts fit in

• What’s the difference between
threads/processes

• Scheduling of threads
• Synchronization of threads

1/25/2006CS 3204 Spring 2006 5

Process

• These are all possible definitions:
– A program in execution
– An instance of a program running on a computer
– Schedulable entity (*)
– Unit of resource ownership
– Unit of protection
– Execution sequence (*) + current state (*) + set of

resources

(*) can be said of threads as well
1/25/2006CS 3204 Spring 2006 6

Alternative definition
• Thread:

– Execution sequence + CPU state (registers + stack)

• Process:
– (n * Threads + Resources (specifically: accessible

heap memory, global variables, file descriptors, etc.)

• In most contemporary OS, n >= 1.
• In Pintos, n=1: a process is a thread – as in

traditional Unix.
– Following discussion applies to both threads &

processes.

2

1/25/2006CS 3204 Spring 2006 7

Context Switching
• Multiprogramming: switch to another process if

current process is (momentarily) blocked
• Time-sharing: switch to another process

periodically to make sure all process make equal
progress
– this switch is called a context switch.

• Must understand how it works
– how it interacts with user/kernel mode switching
– how it maintains the illusion of each process having

the CPU to itself (process must not notice being
switched in and out!)

1/25/2006CS 3204 Spring 2006 8

Context Switching

Process 1

Process 2

Kernel

user mode

kernel mode

Timer interrupt: P1 is preempted,
context switch to P2

Timer interrupt: P1 is preempted,
context switch to P2

System call: (trap):
P2 starts I/O operation, blocks
context switch to process 1

System call: (trap):
P2 starts I/O operation, blocks
context switch to process 1

I/O device interrupt:
P2’s I/O complete
switch back to P2

I/O device interrupt:
P2’s I/O complete
switch back to P2

Timer interrupt: P2 still has
time left, no context switch

Timer interrupt: P2 still has
time left, no context switch

1/25/2006CS 3204 Spring 2006 9

Aside: Kernel Threads

Process 1

Process 2

Kernel

user mode

kernel mode

Most OS (including Pintos) support kernel threads
that never run in user mode – in fact, in Project 1, all
Pintos threads run like that.

Most OS (including Pintos) support kernel threads
that never run in user mode – in fact, in Project 1, all
Pintos threads run like that.

Kernel Thread

Careful: “kernel thread” not the same as
kernel-level thread (KLT) – more on KLT later

1/25/2006CS 3204 Spring 2006 10

Mode Switching
• User → Kernel mode

– For reasons external or internal to CPU
• External (aka hardware) interrupt:

– timer/clock chip, I/O device, network card, keyboard, mouse
– asynchronous (with respect to the executing program)

• Internal interrupt (aka software interrupt, trap, or
exception)
– are synchronous
– System Call (process wants to enter kernel to obtain services) –

intended
– Fault/exception (division by zero, privileged instruction in user

mode) – usually unintended
• Kernel → User mode switch on iret instruction

1/25/2006CS 3204 Spring 2006 11

Context vs Mode Switching
• Mode switch guarantees kernel gains control

when needed
– To react to external events
– To handle error situations
– Entry into kernel is controlled

• Not all mode switches lead to context switches
– Kernel code’s logic decides when – subject of

scheduling
• Mode switch always hardware supported

– Context switch (typically) not – this means many
options for implementing it!

1/25/2006CS 3204 Spring 2006 12

Implementing Processes

• To maintain illusion, must remember a process’s
information when not currently running

• Process Control Block (PCB)
– Identifier (*)
– Value of registers, including stack pointer (*)
– Information needed by scheduler: process state

(whether blocked or not) (*)
– Resources held by process: file descriptors, memory

pages, etc.
(*) applies to TCB (thread control block) as well

3

1/25/2006CS 3204 Spring 2006 13

PCB vs TCB

• In 1:1 systems (Pintos), TCB==PCB
– struct thread

– add information there as projects progresses
• In 1:n systems:

– TCB contains execution state of thread +
scheduling information + link to PCB for
process to which thread belongs

– PCB contains identifier, plus information
about resources shared by all threads

struct thread
{
tid_t tid; /* Thread identifier. */
enum thread_status status; /* Thread state. */
char name[16]; /* Name. */
uint8_t *stack; /* Saved stack pointer. */
int priority; /* Priority. */
struct list_elem elem; /* List element. */
/* others you’ll add as needed. */

};

1/25/2006CS 3204 Spring 2006 14

Steps in context switch: high-level

• Save the current process’s execution state
to its PCB

• Update current’s PCB as needed
• Choose next process N
• Update N’s PCB as needed
• Restore N’s PCB execution state

– May involve reprogramming MMU

1/25/2006CS 3204 Spring 2006 15

Execution State

• Saving/restoring execution state is highly tricky:
– Must save state without destroying it

• Registers
– On x86: eax, ebx, ecx, …

• Stack
– Special area in memory that holds activation records
– Saving the stack means retaining that area & saving a

pointer to it (“stack pointer” = esp)

1/25/2006CS 3204 Spring 2006 16

The Stack, seen from C/C++

• Q.: which of these variables are stored on
the stack, and which are not?

void func(int d)
{
static int e;
int f;
struct S w;
int *g = new int[10];

}

int a;
static int b;
int c = 5;
struct S

{
int t;

} s;

A.: On stack: d, f, w (including w.t), g
Not on stack: a, b, c, s (including s.t), e, g[0]…g[9]
A.: On stack: d, f, w (including w.t), g
Not on stack: a, b, c, s (including s.t), e, g[0]…g[9]

1/25/2006CS 3204 Spring 2006 17

Switching Procedures

• Inside kernel, context switch is implemented in
some procedure (function) called from C code
– Appears to caller as a procedure call

• Must understand how to switch procedures
(call/return)

• Procedure calling conventions
– Architecture-specific
– Defined by ABI (application binary interface),

implemented by compiler
– Pintos uses SVR4 ABI

1/25/2006CS 3204 Spring 2006 18

x86 Calling Conventions
• Caller saves caller-saved

registers as needed
• Caller pushes arguments,

right-to-left on stack via push
assembly instruction

• Caller executes CALL
instruction: save address of
next instruction & jump to
callee

• Caller resumes: pop
arguments off the stack

• Caller restores caller-saved
registers, if any

• Callee executes:
– Saves callee-saved

registers if they’ll be
destroyed

– Puts return value (if any) in
eax

• Callee returns: pop return
address from stack & jump to it

