
1

CS 3204
Operating Systems

Godmar Back

Lecture 37

4/21/2006CS 3204 Spring 2006 2

Announcements

• Project 4 due Wed, May 3, 11:59pm
• Read section 11.6 on RAID
• Skim 16.1-16.5

4/21/2006CS 3204 Spring 2006 3

RAID – Redundant Arrays of
Inexpensive Disks

• Idea born around 1988
• Original observation: it’s cheaper to buy multiple, small

disks than single large expensive disk (SLED)
– SLEDs don’t exist anymore, but multiple disks arranged as a

single disk still useful
• Can reduce latency by writing/reading in parallel
• Can increase reliability by exploiting redundancy
• Several arrangements are known, 7 have “standard

numbers”
• Can be implemented in hardware/software
• RAID array would appear as single physical volume to

LVM
4/21/2006CS 3204 Spring 2006 4

RAID 0

• RAID: Striping data across disk
• Advantage: If disk access go to different disk,

can read/write in parallel, decrease in latency
• Disadvantage: Decreased reliability

(MTTF(Array) = MTTF(Disk)/#disks

4/21/2006CS 3204 Spring 2006 5

RAID 1

• RAID 1: Mirroring (all reads/writes go to both
disks)

• Advantages:
– Redundancy, Reliability – have backup of data
– Better read performance than single disk – why?
– About same write performance as single disk

• Disadvantage:
– Inefficient storage use

4/21/2006CS 3204 Spring 2006 6

Using XOR for Parity

• Recall:
– X^X = 0
– X^1 = !X
– X^0 = X

• Let’s set: W=X^Y^Z
– X^W=X^X^Y^Z=(X^X)^Y^Z=0^(Y^Z)=Y^Z
– Y^X^W=Y^Y^Z=0^Z=Z

• Obtain: Z=X^Y^W (analogously for X, Y)

X Y Z W

011

100

10XOR

2

4/21/2006CS 3204 Spring 2006 7

RAID 4

• RAID 4: Striping + Block-level parity
• Advantage: need only N+1 disks for N-disk capacity & 1

disk redundancy
• Disadvantage: small writes (less than one stripe) may

require 2 reads & 2 writes
– Read old data, read old parity, write new data, compute & write

new parity
– Parity disk can become bottleneck

4/21/2006CS 3204 Spring 2006 8

RAID 5

• RAID 5: Striping + Block-level Distributed Parity
• Like RAID 4, but avoids parity disk bottleneck
• Get small read latency advantage
• Best large read & large write performance
• Only remaining disadvantage is small writes

Security & Protection

4/21/2006CS 3204 Spring 2006 10

Security Requirements & Threats

• Requirement
– Confidentiality
– Integrity
– Availability
– Authenticity

• Threat
– Interception
– Modification
– Interruption
– Fabrication

The goal of a protection system is to ensure these
requirements and protect against accidental or
intentional misuse

4/21/2006CS 3204 Spring 2006 11

Policy vs Mechanism

• First step in addressing security: separate
the what should be done from the how it
should be done part

• A protection system is the mechanism that
enforces the security policy

• The security policy specifies what is
allowed and what is not

4/21/2006CS 3204 Spring 2006 12

Protection: AAA

• Core components of any protection mechanism
• Authentication

– Verify that we really know who we are talking to
• Authorization

– Check that user X is allowed to do Y
• Access enforcement

– Ensure that authorization decision is respected
– Hard: every system has holes

• Social vs technical enforcement

3

4/21/2006CS 3204 Spring 2006 13

Authentication Methods
• Passwords

– Weakest form, and most common
– Subject to dictionary attacks
– Passwords should not be stored in clear text, instead,

use one-way hash function
• Badge or Keycard

– Should not be (easily) forgeable
– Problem: how to invalidate?

• Biometrics
– Problem: ensure trusted path to device

4/21/2006CS 3204 Spring 2006 14

Authorization

• Once user has been authenticated, need
some kind of database to keep track of
how they are allowed to do

• Simple model:
– Access Matrix

--Can R/WUser B

Exclusive
Access

Can ReadUser A

TTY 2File 1

Principals
(e.g. users)

Objects
(e.g. files, resources)

4/21/2006CS 3204 Spring 2006 15

Representing Access Matrices

• Problem: access matrices can be huge
– How to deal with them in a condensed way?

• Two choices:
• By row: Capabilities

– What is principal X allowed to do?
• By column: Access Control Lists

– Who has access to resource Y?

4/21/2006CS 3204 Spring 2006 16

Access Control Lists
• General: store list of <user, set of privileges> for

each object
• Example: files, for each file store who is allowed

to access it (and how)
• Most filesystems support it.
• Groups can be used to compress the

information:
– Old-style Unix permissions rwxr-xr-x

• Q.: where in the filesystem would you store
ACLs/permissions?

4/21/2006CS 3204 Spring 2006 17

Capabilities

• General: store (capability) list of <object,
set of privileges> for each user

• Typically used in systems that must be
very secure
– Default is empty capability list

• Capabilities also often function as names
– Can access it if you know the name
– Must make names unforgeable, or must have

system monitors who holds what capabilities

4/21/2006CS 3204 Spring 2006 18

Trusted Computing Base

• The part of the system that enforces
access control decisions
– Also protects authentication information

• Issues:
– Bug in TCB, security is compromised
– Need to keep it small and manageable
– Usually: entire kernel is part of TCB (huge!)

• Weakest link phenomenon

