
1

CS 3204
Operating Systems

Godmar Back

Lecture 34

4/14/2006CS 3204 Spring 2006 2

Announcements

• Project 4 due Wed, May 3, 11:59pm
• Recommended reading 

– Chapter 11.1-11.5, 11A
– Chapter 12, in particular 12.7

• Project 4 help sessions next Monday & 
Tuesday

Filesystems

4/14/2006CS 3204 Spring 2006 4

Multi-Level Indices
• Used in Unix & 

Pintos (P4)1
2
3
..
N

FLI
SLI
TLI

1

2

index

N

index2

index

index

N+IN+1

N+I+1

index3 index2

Direct
Blocks

Indirect
Block

Double
Indirect
Block

Triple
Indirect
Block index N+I+I2

4/14/2006CS 3204 Spring 2006 5

Storing Inodes

• Unix v7, BSD 4.3

• FFS (BSD 4.4)

• Cylindergroups have 
superblock+bitmap+inode list+file space

• Try to allocate file & inode in same 
cylinder group to improve access locality

I0 I1 I2 I3 I4 …..Superblock Rest of disk for files & directories

I0 I1 …SB1 Files … I3 I4 ….. Files … I8 I9 ….. Files …SB2 SB3

CGi

4/14/2006CS 3204 Spring 2006 6

Positioning Inodes

• Putting inodes in fixed place makes finding 
inodes easier
– Can refer to them simply by inode number
– After crash, there is no ambiguity as to what 

are inodes vs. what are regular files
• Disadvantage: limits the number of files 

per filesystem at creation time
– Use “df –ih” on Linux to see how many inodes

are used/free



2

4/14/2006CS 3204 Spring 2006 7

Directories
• Need to find file descriptor (inode), given a name 
• Approaches:

– Single directory (old PCs), Two-level approaches with 
1 directory per user

• Now exclusively hierarchical approaches:
– File system forms a tree (or DAG)

• How to tell regular file from directory?
– Set a bit in the inode

• Data Structures
– Linear list of (inode, name) pairs
– B-Trees that map name -> inode

4/14/2006CS 3204 Spring 2006 8

Using Linear Lists

• Advantage: (relatively) simple to 
implement

• Disadvantages:
– Scan makes lookup (& delete!) really slow for 

large directories
– Can cause fragmentation (though not a 

problem in practice)

23 multi-oom 15 sample.txt

offset 0

inode #

4/14/2006CS 3204 Spring 2006 9

Using B-Trees

• Advantages: 
– Scalable to large number of files: in growth, in 

lookup time
• Disadvantage:

– Complex
– Overhead for small directories

4/14/2006CS 3204 Spring 2006 10

Absolute Paths

• How to resolve a path name such as 
“/usr/bin/ls”?
– Split into tokens using “/” separator
– Find inode corresponding to root directory

• (how? Use fixed inode # for root)
– (*) Look up “usr” in root directory, find inode
– If not last component in path, check that inode

is a directory. Go to (*), looking for next comp
– If last component in path, check inode is of 

desired type, return

4/14/2006CS 3204 Spring 2006 11

Some Issues in Name Resolution

• Must have a way to scan an entire directory 
without other processes interfering -> need a 
“lock” function

• But don’t need to hold lock on /usr when 
scanning /usr/bin
– Directories can only be removed if they’re empty

• Most OS cache translations in “namei” cache –
maps absolute pathnames to inode

4/14/2006CS 3204 Spring 2006 12

Current Directory

• Relative pathnames are resolved relative 
to current directory
– Provides default context
– Every process has one in Unix/Pintos

• chdir(2) changes current directory
• lookup algorithm the same, except starts 

from current dir
– process should keep current directory open
– current directory inherited from parent



3

4/14/2006CS 3204 Spring 2006 13

Hard & Soft Links
• Provides a aliases for a file
• Windows: “junctions” & “shortcuts”
• Hard links: (Unix: ln)

– Two independent directory entries have the same 
inode number, refer to same file

– Inode contains a reference count
– Disadvantage: alias only possible with same 

filesystem
• Soft links: (Unix: ln –s)

– Special type of file (noted in inode); content of file is 
absolute or relative pathname – stored inside inode
instead of direct block list


