
1

CS 3204
Operating Systems

Godmar Back

Lecture 31

4/7/2006CS 3204 Spring 2006 2

Announcements

• Project 3 due April 13

• Additional Office Hours today 3-4pm

Disks & Filesystems

Buffer Cache

4/7/2006CS 3204 Spring 2006 4

Disk Caching – Buffer Cache

• How much memory should be dedicated 
for it?

• How should eviction be handled?
• How should prefetching be done?
• How should concurrent access be 

mediated?
– How is consistency guaranteed? (All must go 

through buffer cache!)
• What write-back strategy should be used?

4/7/2006CS 3204 Spring 2006 5

Buffer Cache in Pintos

512 bytes

512 bytes

512 bytes

512 bytes

512 bytes

512 bytes

512 bytes
64

desc

desc

desc

desc

desc

desc

desc

Cache Block Descriptor
- disk_sector_id, if in use
- dirty bit
- valid bit
- # of readers
- # of writers
- # of pending read/write requests
- lock to protect above variables
- signaling variables to signal 
availability changes
- usage information for eviction 
policy
- data (pointer or embedded)

4/7/2006CS 3204 Spring 2006 6

A Buffer Cache Interface
// cache.h
struct cache_block; // opaque type
// reserve a block in buffer cache dedicated to hold this sector
// possibly evicting some other unused buffer
// either grant exclusive or shared access
struct cache_block * cache_get_block (disk_sector_t sector, bool exclusive);
// release access to cache block
void cache_put_block(struct cache_block *b);
// read cache block from disk, returns pointer to data
void *cache_read_block(struct cache_block *b);
// fill cache block with zeros, returns pointer to data
void *cache_zero_block(struct cache_block *b);
// mark cache block dirty (must be written back)
void cache_mark_block_dirty(struct cache_block *b);
// not shown: initialization, readahead, shutdown

// cache.h
struct cache_block; // opaque type
// reserve a block in buffer cache dedicated to hold this sector
// possibly evicting some other unused buffer
// either grant exclusive or shared access
struct cache_block * cache_get_block (disk_sector_t sector, bool exclusive);
// release access to cache block
void cache_put_block(struct cache_block *b);
// read cache block from disk, returns pointer to data
void *cache_read_block(struct cache_block *b);
// fill cache block with zeros, returns pointer to data
void *cache_zero_block(struct cache_block *b);
// mark cache block dirty (must be written back)
void cache_mark_block_dirty(struct cache_block *b);
// not shown: initialization, readahead, shutdown



2

4/7/2006CS 3204 Spring 2006 7

Buffer Cache Rationale

• Do not combine allocating a buffer (a resource 
management decision) with loading the data into the 
buffer from file (which is not always necessary)

• Provide a way for buffer user to say they’re done with the 
buffer

• Provide a way to share buffer
• More efficient interface (opaque type instead of block idx

saves lookup, constant size buffers)

class BufferPool { // (2) Buffer Passing
public:

virtual void* getblock(int block) = 0;
virtual void dirtyblock(int block) = 0;
virtual int blocksize() = 0;

};

class BufferPool { // (2) Buffer Passing
public:

virtual void* getblock(int block) = 0;
virtual void dirtyblock(int block) = 0;
virtual int blocksize() = 0;

};

Compare to buffer 
pool assignment in 
CS2604

Differences:

4/7/2006CS 3204 Spring 2006 8

Buffer Cache Sizing
• Simple approach

– Set aside part of physical memory for buffer 
cache/use rest for virtual memory pages as page 
cache – evict buffer/page from same pool

• Disadvantage: can’t use idle memory of other 
pool - usually use unified cache subject to 
shared eviction policy

• Windows allows user to limit buffer cache size
• Problem:

– Bad prediction of buffer caches accesses can result in 
poor VM performance (and vice versa)

4/7/2006CS 3204 Spring 2006 9

Buffer Cache Replacement
• Similar to VM Page Replacement, differences:

– Can do exact LRU (because user must call 
cache_get_block()!)

– But LRU hurts when long sequential accesses –
should use MRU (most recently used) instead.

• Example reference string: ABCDABCDABCD, 
can cache 3:
– LRU causes 12 misses, 0 hits, 9 evictions
– How many misses/hits/evictions with MRU?

• Also: not all blocks are equally important, benefit 
from some hits more than from others

4/7/2006CS 3204 Spring 2006 10

Buffer Cache Writeback Strategies

• Write-Through:
– Good for floppy drive, USB stick
– Poor performance – every write causes disk access

• (Delayed) Write-Back:
– Makes individual writes faster – just copy & set bit
– Absorbs multiple writes
– Allows write-back in batches

• Problem: what if system crashes before you’ve 
written data back?
– Trade-off: performance in no-fault case vs. damage 

control in fault case
– If crash occurs, order of write-back can matter

4/7/2006CS 3204 Spring 2006 11

Writeback Strategies (2)

• Must write-back on eviction (naturally)
• Periodically (every 30 seconds or so)
• When user demands:

– fsync(2) writes back all modified data 
belonging to one file – database 
implementations use this

– sync(1) writes back entire cache
• Some systems guarantee write-back on 

file close


