CS 3204
Operating Systems

Lecture 30
Godmar Back

Virgini

mTec_h

Kernel-level vs User-level
Threads

_vug] nia

mTﬁ;h

M:N Model (cont'd)

« Invented for use in Solaris OS early 90s
¢ Championed for a while
— Idea was to get the best of both worlds
— Fast context switches if between user-level threads
— Yet enough concurrency to exploit multiple CPUs
« Since abandoned in favor of kernel-level threads
only approach
— Too complex — what's the “right” number of LWP?

— 2-level scheduling/resource management was hard:
both user/kernel operated with half-blind

v“gmm‘a.r och CS 3204 Spring 2006 41512006 5

Announcements

* Project 3 due April 13

e Th Apr 6, 7pm, 655 McBryde: attend town-
hall meeting regarding planned
restructuring of 6™ floor undergrad space

v“gmm‘a.r och CS 3204 Spring 2006 4/5/2006 2

M:N Model

Tiadiions
peoHs N\ Pl Peed Procd

- T [[fAS
- (441 ISR

1
1

Tt Cine [« JrS—

* Solaris Lightweight Processes
vuglnmlaTed] CS 3204 Spring 2006 4/5/2006 4

Multi-Threading in Linux

» Went through different revisions
* Today (Linux 2.6): NPTL — Next-Generation
POSIX Thread Library
* 1:1 model
» optimizes synchronization via “futexes”
— avoids mode switch for common case of uncontended
locks by performing atomic operation

— constant-time scheduling operation allow for scaling
in number of threads

v“gmm‘a.r och CS 3204 Spring 2006 4/5/2006 6

Summary

* Memory Management
« Address Spaces vs Protection Domains
« Kernel vs User-Level Threads

V“Emmla.red] CS 3204 Spring 2006 4/5/2006 7

Disks & Filesystems

Virgini

m'l'ed]

What Disks Look Like

Hitachi Deskstar T7K500 SATA

Virginia CS 3204 Spring 2006 4/5/2006 9

m'l'ed]

How Disks Work

* Flash Animation
e See http://cis.poly.edu/cs2214rvs/disk.swf

Virginia CS 3204 Spring 2006 4/5/2006 10

m'l'ed]

Disk Schematics

Source: Micro House PC Hardware Library Volume I: Hard Drives

V“Emmla.red] CS 3204 Spring 2006 41512006 1

Typical Disk Parameters

» 2-30 heads (2 per platter)
e Diameter: 2.5" — 14"

» Capacity: 20MB-500GB
 Sector size: 64 bytes to 8K bytes
— Most PC disks: 512 byte sectors
» 700-20480 tracks per surface

» 16-1600 sectors per track

V“Emmla.red] CS 3204 Spring 2006 4/5/2006 12

What's important about disks from
OS perspective

 Disks are big & slow - compared to RAM
» Access to disk requires
— Seek (move arm to track) — to cross all tracks anywhere from 20-
50ms, on average takes 1/3.
— Rotational delay (wait for sector to appear under track) 7,200rpm
is 8.3ms per rotation, on average takes Y2: 4.15ms rot delay
— Transfer time (fast: 512 bytes at 998 Mbit/s is about 3.91us)
* Seek+Rot Delay dominates
* Random Access is expensive
— and unlikely to get better
¢ Consequence:
— avoid seeks
— seek to short distances
— amortize seeks by doing bulk transfers

v“gmm‘a.r och CS 3204 Spring 2006 4/5/2006 13

Disk Scheduling

« Can use priority scheme

» Can reduce avg access time by sending requests to disk
controller in certain order
— Or, more commonly, have disk itself reorder requests

* SSTF: shortest seek time first
— Like SJF in CPU scheduling, guarantees minimum avg seek

time, but can lead to starvation
« SCAN: “elevator algorithm”

— Process requests with increasing track numbers until highest
reached, then decreasing etc. — repeat

« Variations:
— LOOK - don't go all the way to the top without passengers
— C-SPAN: - only take passengers in one direction

v“gmm‘a.r l CS 3204 Spring 2006 4/5/2006 14

Accessing Disks

» Sector is the unit of atomic access

« Writes to sectors should always complete,
even if power fails

« Consequence:
— Writing a single byte requires read-modify-

WIIte | yoid set_byte(off_t off, char b) {

char buffer[512];

disk_read(disk, off/DISK_SECTOR_SIZE, buffer);
buffer[off % DISK_SECTOR_SIZE] = b;
disk_write(disk, off/DISK_SECTOR_SIZE, buffer);

}
ngmmla.r wch CS 3204 Spring 2006 4/5/2006 15

Disk Caching — Buffer Cache

* How much memory should be dedicated for it?

— In older systems (& Pintos), set aside a portion of
physical memory

— In newer systems, integrated into virtual memory
system: e.g., page cache in Linux
* How should prefetching be done?
+ How should concurrent access be mediated
(multiple processes may be attempting to
write/read to same sector)?

— How is consistency guaranteed? (All must go through
buffer cache!)

» What write-back strategy should be used?

v“@-nmla.r wch CS 3204 Spring 2006 4/5/2006 16

Buffer Cache in Pintos

@he Block Descriptor \ \ desc H 512 bytes ‘
- disk_sector_id, if in use
- dirty bit V[desc [512 bytes |
- valid bit
o readers [desc M 512 bytes |
- # of writers [desc M 512 bytes |
- # of pending read/write requests B >64
- lock to protect above variables
- signaling variables to signal
availability changes \ desc H 512 bytes \
- usage information for eviction
policy \ desc H 512 bytes \
- dat; t bedded
ata (pointer or embedded) ‘ desc H 512 bytes ‘

v“gmm‘a.r och CS 3204 Spring 2006 41512006 17

A Buffer Cache Interface

I/l cache.h

struct cache_block; /I opaque type

/I reserve a block in buffer cache dedicated to hold this sector
/I possibly evicting some other unused buffer

/I either grant exclusive or shared access

struct cache_block * cache_get_block (disk_sector_t sector, bool exclusive);
Il release access to cache block

void cache_put_block(struct cache_block *b);

/I read cache block from disk, returns pointer to data

void *cache_read_block(struct cache_block *b);

/I fill cache block with zeros, returns pointer to data

void *cache_zero_block(struct cache_block *b);

/I mark cache block dirty (must be written back)

void cache_mark_block_dirty(struct cache_block *b);

/I not shown: initialization, readahead, shutdown

v“gmm‘a.r och CS 3204 Spring 2006 4/5/2006 18

