
1

CS 3204
Operating Systems

Godmar Back

Lecture 30

4/5/2006CS 3204 Spring 2006 2

Announcements

• Project 3 due April 13

• Th Apr 6, 7pm, 655 McBryde: attend town-
hall meeting regarding planned 
restructuring of 6th floor undergrad space

Kernel-level vs User-level 
Threads

4/5/2006CS 3204 Spring 2006 4

M:N Model

• Solaris Lightweight Processes

4/5/2006CS 3204 Spring 2006 5

M:N Model (cont’d)
• Invented for use in Solaris OS early 90s
• Championed for a while

– Idea was to get the best of both worlds
– Fast context switches if between user-level threads
– Yet enough concurrency to exploit multiple CPUs

• Since abandoned in favor of kernel-level threads 
only approach
– Too complex – what’s the “right” number of LWP?
– 2-level scheduling/resource management was hard: 

both user/kernel operated with half-blind

4/5/2006CS 3204 Spring 2006 6

Multi-Threading in Linux

• Went through different revisions
• Today (Linux 2.6): NPTL – Next-Generation 

POSIX Thread Library
• 1:1 model
• optimizes synchronization via “futexes”

– avoids mode switch for common case of uncontended
locks by performing atomic operation

– constant-time scheduling operation allow for scaling 
in number of threads



2

4/5/2006CS 3204 Spring 2006 7

Summary

• Memory Management
• Address Spaces vs Protection Domains
• Kernel vs User-Level Threads Disks & Filesystems

4/5/2006CS 3204 Spring 2006 9

What Disks Look Like

Hitachi Deskstar T7K500 SATA

4/5/2006CS 3204 Spring 2006 10

How Disks Work

• Flash Animation
• See http://cis.poly.edu/cs2214rvs/disk.swf

4/5/2006CS 3204 Spring 2006 11

Disk Schematics

Source: Micro House PC Hardware Library Volume I: Hard Drives

4/5/2006CS 3204 Spring 2006 12

Typical Disk Parameters

• 2-30 heads (2 per platter)
• Diameter: 2.5” – 14”
• Capacity: 20MB-500GB
• Sector size: 64 bytes to 8K bytes

– Most PC disks: 512 byte sectors
• 700-20480 tracks per surface
• 16-1600 sectors per track



3

4/5/2006CS 3204 Spring 2006 13

What’s important about disks from 
OS perspective

• Disks are big & slow - compared to RAM
• Access to disk requires

– Seek (move arm to track) – to cross all tracks anywhere from 20-
50ms, on average takes 1/3.

– Rotational delay (wait for sector to appear under track) 7,200rpm 
is 8.3ms per rotation, on average takes ½: 4.15ms rot delay

– Transfer time (fast: 512 bytes at 998 Mbit/s is about 3.91us)
• Seek+Rot Delay dominates
• Random Access is expensive

– and unlikely to get better
• Consequence:

– avoid seeks
– seek to short distances
– amortize seeks by doing bulk transfers

4/5/2006CS 3204 Spring 2006 14

Disk Scheduling
• Can use priority scheme
• Can reduce avg access time by sending requests to disk 

controller in certain order
– Or, more commonly, have disk itself reorder requests

• SSTF: shortest seek time first
– Like SJF in CPU scheduling, guarantees minimum avg seek 

time, but can lead to starvation
• SCAN: “elevator algorithm”

– Process requests with increasing track numbers until highest 
reached, then decreasing etc. – repeat

• Variations: 
– LOOK – don’t go all the way to the top without passengers
– C-SPAN: - only take passengers in one direction

4/5/2006CS 3204 Spring 2006 15

Accessing Disks

• Sector is the unit of atomic access
• Writes to sectors should always complete, 

even if power fails
• Consequence:

– Writing a single byte requires read-modify-
write void set_byte(off_t off, char b) {

char buffer[512];
disk_read(disk, off/DISK_SECTOR_SIZE, buffer);
buffer[off % DISK_SECTOR_SIZE] = b;
disk_write(disk, off/DISK_SECTOR_SIZE, buffer);

}

void set_byte(off_t off, char b) {
char buffer[512];
disk_read(disk, off/DISK_SECTOR_SIZE, buffer);
buffer[off % DISK_SECTOR_SIZE] = b;
disk_write(disk, off/DISK_SECTOR_SIZE, buffer);

}

4/5/2006CS 3204 Spring 2006 16

Disk Caching – Buffer Cache
• How much memory should be dedicated for it?

– In older systems (& Pintos), set aside a portion of 
physical memory 

– In newer systems, integrated into virtual memory 
system: e.g., page cache in Linux

• How should prefetching be done?
• How should concurrent access be mediated 

(multiple processes may be attempting to 
write/read to same sector)?
– How is consistency guaranteed? (All must go through 

buffer cache!)
• What write-back strategy should be used?

4/5/2006CS 3204 Spring 2006 17

Buffer Cache in Pintos

512 bytes

512 bytes

512 bytes

512 bytes

512 bytes

512 bytes

512 bytes
64

desc

desc

desc

desc

desc

desc

desc

Cache Block Descriptor
- disk_sector_id, if in use
- dirty bit
- valid bit
- # of readers
- # of writers
- # of pending read/write requests
- lock to protect above variables
- signaling variables to signal 
availability changes
- usage information for eviction 
policy
- data (pointer or embedded)

4/5/2006CS 3204 Spring 2006 18

A Buffer Cache Interface
// cache.h
struct cache_block; // opaque type
// reserve a block in buffer cache dedicated to hold this sector
// possibly evicting some other unused buffer
// either grant exclusive or shared access
struct cache_block * cache_get_block (disk_sector_t sector, bool exclusive);
// release access to cache block
void cache_put_block(struct cache_block *b);
// read cache block from disk, returns pointer to data
void *cache_read_block(struct cache_block *b);
// fill cache block with zeros, returns pointer to data
void *cache_zero_block(struct cache_block *b);
// mark cache block dirty (must be written back)
void cache_mark_block_dirty(struct cache_block *b);
// not shown: initialization, readahead, shutdown

// cache.h
struct cache_block; // opaque type
// reserve a block in buffer cache dedicated to hold this sector
// possibly evicting some other unused buffer
// either grant exclusive or shared access
struct cache_block * cache_get_block (disk_sector_t sector, bool exclusive);
// release access to cache block
void cache_put_block(struct cache_block *b);
// read cache block from disk, returns pointer to data
void *cache_read_block(struct cache_block *b);
// fill cache block with zeros, returns pointer to data
void *cache_zero_block(struct cache_block *b);
// mark cache block dirty (must be written back)
void cache_mark_block_dirty(struct cache_block *b);
// not shown: initialization, readahead, shutdown


