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Announcements

• Project 3 due April 13

• Th Apr 6, 7pm, 655 McBryde: attend town-
hall meeting regarding planned 
restructuring of 6th floor undergrad space

Kernel-level vs User-level 
Threads
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M:N Model

• Solaris Lightweight Processes
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M:N Model (cont’d)
• Invented for use in Solaris OS early 90s
• Championed for a while

– Idea was to get the best of both worlds
– Fast context switches if between user-level threads
– Yet enough concurrency to exploit multiple CPUs

• Since abandoned in favor of kernel-level threads 
only approach
– Too complex – what’s the “right” number of LWP?
– 2-level scheduling/resource management was hard: 

both user/kernel operated with half-blind
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Multi-Threading in Linux

• Went through different revisions
• Today (Linux 2.6): NPTL – Next-Generation 

POSIX Thread Library
• 1:1 model
• optimizes synchronization via “futexes”

– avoids mode switch for common case of uncontended
locks by performing atomic operation

– constant-time scheduling operation allow for scaling 
in number of threads
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Summary

• Memory Management
• Address Spaces vs Protection Domains
• Kernel vs User-Level Threads Disks & Filesystems
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What Disks Look Like

Hitachi Deskstar T7K500 SATA
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How Disks Work

• Flash Animation
• See http://cis.poly.edu/cs2214rvs/disk.swf
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Disk Schematics

Source: Micro House PC Hardware Library Volume I: Hard Drives

4/5/2006CS 3204 Spring 2006 12

Typical Disk Parameters

• 2-30 heads (2 per platter)
• Diameter: 2.5” – 14”
• Capacity: 20MB-500GB
• Sector size: 64 bytes to 8K bytes

– Most PC disks: 512 byte sectors
• 700-20480 tracks per surface
• 16-1600 sectors per track
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What’s important about disks from 
OS perspective

• Disks are big & slow - compared to RAM
• Access to disk requires

– Seek (move arm to track) – to cross all tracks anywhere from 20-
50ms, on average takes 1/3.

– Rotational delay (wait for sector to appear under track) 7,200rpm 
is 8.3ms per rotation, on average takes ½: 4.15ms rot delay

– Transfer time (fast: 512 bytes at 998 Mbit/s is about 3.91us)
• Seek+Rot Delay dominates
• Random Access is expensive

– and unlikely to get better
• Consequence:

– avoid seeks
– seek to short distances
– amortize seeks by doing bulk transfers
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Disk Scheduling
• Can use priority scheme
• Can reduce avg access time by sending requests to disk 

controller in certain order
– Or, more commonly, have disk itself reorder requests

• SSTF: shortest seek time first
– Like SJF in CPU scheduling, guarantees minimum avg seek 

time, but can lead to starvation
• SCAN: “elevator algorithm”

– Process requests with increasing track numbers until highest 
reached, then decreasing etc. – repeat

• Variations: 
– LOOK – don’t go all the way to the top without passengers
– C-SPAN: - only take passengers in one direction
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Accessing Disks

• Sector is the unit of atomic access
• Writes to sectors should always complete, 

even if power fails
• Consequence:

– Writing a single byte requires read-modify-
write void set_byte(off_t off, char b) {

char buffer[512];
disk_read(disk, off/DISK_SECTOR_SIZE, buffer);
buffer[off % DISK_SECTOR_SIZE] = b;
disk_write(disk, off/DISK_SECTOR_SIZE, buffer);

}

void set_byte(off_t off, char b) {
char buffer[512];
disk_read(disk, off/DISK_SECTOR_SIZE, buffer);
buffer[off % DISK_SECTOR_SIZE] = b;
disk_write(disk, off/DISK_SECTOR_SIZE, buffer);

}

4/5/2006CS 3204 Spring 2006 16

Disk Caching – Buffer Cache
• How much memory should be dedicated for it?

– In older systems (& Pintos), set aside a portion of 
physical memory 

– In newer systems, integrated into virtual memory 
system: e.g., page cache in Linux

• How should prefetching be done?
• How should concurrent access be mediated 

(multiple processes may be attempting to 
write/read to same sector)?
– How is consistency guaranteed? (All must go through 

buffer cache!)
• What write-back strategy should be used?
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Buffer Cache in Pintos
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Cache Block Descriptor
- disk_sector_id, if in use
- dirty bit
- valid bit
- # of readers
- # of writers
- # of pending read/write requests
- lock to protect above variables
- signaling variables to signal 
availability changes
- usage information for eviction 
policy
- data (pointer or embedded)
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A Buffer Cache Interface
// cache.h
struct cache_block; // opaque type
// reserve a block in buffer cache dedicated to hold this sector
// possibly evicting some other unused buffer
// either grant exclusive or shared access
struct cache_block * cache_get_block (disk_sector_t sector, bool exclusive);
// release access to cache block
void cache_put_block(struct cache_block *b);
// read cache block from disk, returns pointer to data
void *cache_read_block(struct cache_block *b);
// fill cache block with zeros, returns pointer to data
void *cache_zero_block(struct cache_block *b);
// mark cache block dirty (must be written back)
void cache_mark_block_dirty(struct cache_block *b);
// not shown: initialization, readahead, shutdown

// cache.h
struct cache_block; // opaque type
// reserve a block in buffer cache dedicated to hold this sector
// possibly evicting some other unused buffer
// either grant exclusive or shared access
struct cache_block * cache_get_block (disk_sector_t sector, bool exclusive);
// release access to cache block
void cache_put_block(struct cache_block *b);
// read cache block from disk, returns pointer to data
void *cache_read_block(struct cache_block *b);
// fill cache block with zeros, returns pointer to data
void *cache_zero_block(struct cache_block *b);
// mark cache block dirty (must be written back)
void cache_mark_block_dirty(struct cache_block *b);
// not shown: initialization, readahead, shutdown


