
1

CS 3204
Operating Systems

Godmar Back

Lecture 29

4/3/2006CS 3204 Spring 2006 2

Announcements

• Project 3 page table design document 
– Should have received feedback – ask us 

questions if you’re still unclear
• Project 3 due April 13

• Th Apr 6, 7pm, 655 McBryde: attend town-
hall meeting regarding planned 
restructuring of 6th floor undergrad space

Memory Management Wrap-Up, 
Address Spaces & User-level 

Threads

4/3/2006CS 3204 Spring 2006 4

Mem Mgmt Without Virtual Memory

• Book spends a great deal of time on it
– Historically important, and still important for VM-less 

devices (embedded devices, etc.)
• Imagine if we didn’t have VM, it would be hard or 

impossible to
– Retain the ability to load a program anywhere in 

memory
– Accommodate programs that grow or shrink in size
– Use idle memory for other programs
– Move/relocate a running program in memory

• VM drastically simplifies systems design

4/3/2006CS 3204 Spring 2006 5

User-level Memory Management
• Goals:

– Minimize fragmentation
– Speed
– Maximize locality
– Provide for some error 

detection
• Typical algorithms:

– First-fit, best-fit
– No universally best algorithm: 

can always construct worst 
case sequence

• Conservative heap growth
– “wilderness preservation”

Code

Data
BSS

Stack

wilderness

Heap user-level allocator

code segment

0

MAX_VIRTUAL

4/3/2006CS 3204 Spring 2006 6

Address Spaces & Protection 
Domains

• Normal case: each user process has its own 
address space & own protection domain

• Sharing an address space means to put the 
same meaning to a particular virtual address

• Sharing a protection domain means to have the 
same access rights to a particular piece of 
memory

• The two are not always identical:
– Single address space OS (all processes share one 

address space – ideally 64bit) – advantage: can use 
pointers as names for objects



2

4/3/2006CS 3204 Spring 2006 7

Address Space & Threads

• In Pintos: one thread per address space
• More combinations in real world:

VMS, Mach, 
Win/NT, Solaris, 
Linux

Embedded 
Systems;
Pilot (1978)

many threads/space
multi-threading

Traditional Unix 
(BSD 4.3, 4.4, 
SVR3); Pintos

MS-DOS
MacOS-9

1 thread/space

many1# of address spaces

4/3/2006CS 3204 Spring 2006 8

Kernel-level vs User-level Threads

• Threads on previous slide were 
“kernel-level” threads
– Kernel knows about them:

• Have kernel-assigned thread id + TCB
• Have their own kernel stack

• Alternative: it is also possible to 
build “user-level” threads
– Kernel is unaware of them

• Combinations of these models are 
possible as well

4/3/2006CS 3204 Spring 2006 9

User-level Threads
• Usually implemented using library

– (recall: core of context switching code in Pintos did 
not require any privileged instructions – so can do it in 
a user program also)

• Similar to “co-routine” concept
• Advantages

– can be lightweight
– context switches can be fast (don’t have to enter 

kernel, and since shared address space no TLB 
switch required)

– can be done (almost) portably for any OS

4/3/2006CS 3204 Spring 2006 10

User-level Threads - Issues
• How can traditional RUNNING/READY/BLOCKED state 

model be implemented?
– Problem: RUNNING->BLOCKED transitions should cause 

another READY thread to be scheduled
– Q.: what happens if user-level thread calls “read()” system call 

and blocks in kernel? 
• Must use elaborate mechanisms that avoid blocking in 

the kernel
– Redirect all system calls that might block entire process and 

replace them with non-blocking versions
– Overhead: may require additional system call

• Since kernel sees only one thread, can use at most 1 
CPU – not truly SMP-capable

4/3/2006CS 3204 Spring 2006 11

Managing Stack Space
• Stacks require continuous virtual address space

– On 32-bit systems: virtual address space 
fragmentation can result

– only have 3GB total in user space for code, data, 
shared libs – limits the number of threads

• What size should stack have?
• This is an issue for both ULT & KLT
• How to detect stack overflow (or grow stack)?

– Detect in software or in hardware (or ignore)
– Stack growth usually only available in KLT 

implementations
– Compiler support can create discontiguous stacks

• Related Issues: how to implement
– Get local thread id “pthread_self()”
– Thread-local storage (TLS)

stack1

stack2

guard

guard

4/3/2006CS 3204 Spring 2006 12

Preemption vs Nonpreemption

• Implementing preemption in user-level threads 
requires timer-interrupt like notification facility 
(SIGALRM in Unix)
– But then overhead of saving all state returns

• Truly lightweight user-level threads are non-
preemptive
– Makes implementing locks really easy – no need for 

atomic instructions!
– But then: cannot preempt uncooperative threads, lose 

ability to round-robin schedule



3

4/3/2006CS 3204 Spring 2006 13

Aside: UNIX/POSIX Signals
• General notification interface that is used for many things 

in POSIX-like systems
• Examples (read kill(2), signal(2), signal(7)):

– Job control (Ctrl-C, Ctrl-Z) send SIGINT/SIGSTOP to process
– Processes can send each other (or themselves) signals
– Signals are used for error conditions: SIGSEGV, SIGILL
– Also used for timers, I/O conditions, profiling

• Default handling depends on signal: ignore, terminate, 
stop, core-dump
– processes can override handling
– kernel may invoke signal handlers if so instructed: like interrupt 

handlers – same issues apply wrt safety
• POSIX signals are per-process, complex rules describe 

which thread within process may handle a signal


