
1

CS 3204
Operating Systems

Godmar Back

Lecture 28

3/31/2006CS 3204 Spring 2006 2

Announcements

• Project 3 page table design document 
– Vijay will send feedback today

• Project 3 due April 13

VM Design Issues

Continued

3/31/2006CS 3204 Spring 2006 4

VM Access Time & Page Fault Rate

• Consider expected access time in terms of fraction p of 
page accesses that don’t cause page faults.

• Then 1-p is page fault frequency 
• Assume p = 0.99, assume memory is 100ns fast, and 

page fault servicing takes 10ms – how much slower is 
your VM system compared to physical memory?

• access time = 99ns + 0.01*(10000100) ns ≈ 100,000ns 
or 0.1ms
– Compare to 100ns or 0.0001ms speed ≈ about 1000x slowdown

• Conclusion: even low page fault rates lead to huge 
slowdown 

access time = p * memory access time 
+ (1-p) * (memory access time + page fault service time)

3/31/2006CS 3204 Spring 2006 5

What is Thrashing

• System accesses a page, evicts another page 
from its frame, and next access goes to just-
evicted page which must be brought in

• Worst case a phenomenon called Thrashing
– leads to constant swap-out/swap-in
– 100% disk utilization, but no process makes progress

• CPU most idle, memory mostly idle

3/31/2006CS 3204 Spring 2006 6

How to avoid Thrashing

• Or contain its effects
• Define: “working set” (1968, Denning)
• Set of pages that a process accessed during 

some window/period of length T in the past
– Hope that it’ll match the set accessed in the future

• Idea: if we can manage to keep working set in 
physical memory, thrashing will not occur



2

3/31/2006CS 3204 Spring 2006 7

Working Set
• Suppose we know or can estimate working set –

how could we use it?
• Idea 1: give each process as much memory as 

determined by size of its WS
• Idea 2: preferably evict frames that hold pages 

that don’t seem to be part of WS
• Idea 3: if WS cannot be allocated, swap out 

entire process (and exclude from scheduling for 
a while)
– “medium term scheduling”, “swap-out scheduling”
– Inactive vs active processes
– Or don’t admit in the first place (“long term 

scheduling”)
3/31/2006CS 3204 Spring 2006 8

Estimating Working Set
• Compute “idle time” for each page

– Amount of CPU time process received since last 
access to page

• On page fault, scan resident pages
– If referenced, set idle time to 0
– If not referenced, idle_time += time since last scan
– If idle_time > T, consider to not be part of working set

• This is known as working set replacement 
algorithm
– Variation is WSClock that treats working set a circular 

list like global clock does, and updates “time of last 
use” – evicting those where T_last < T_current - T

3/31/2006CS 3204 Spring 2006 9

Page Fault Frequency
• Alternative method of working set estimation

– PFF: # page faults/instructions executed
– Pure CPU perspective vs memory perspective 

provided by WSClock
• Below threshold – can take frames away from 

process
• Above threshold – assign more frames
• Far above threshold – suspect thrashing & swap 

out
• Potential drawback: can be slow to adopt to 

periods of transition

3/31/2006CS 3204 Spring 2006 10

Clock-PRO
• Clock and algorithms like it 

try to approximate LRU:
– When does LRU not work: 
– Sequential scans, large loops

• Alternative:
– Reuse distance: should replace page with large reuse 

distance
• Clock-PRO: Idea – extend our reasoning 

capability by remembering information about 
pages that were evicted from frames previously

• See [Jiang 2005]

Segmentation

3/31/2006CS 3204 Spring 2006 12

Segmentation

• Historical alternative to paging
• Instead of dividing virtual address space in 

many small, equal-sized pages, divide into 
a few, large segments

• Virtual address is then (segment number, 
segment offset)

segno segmentoffset

Segment Table
seg base | seg limit

m
em

ory

+
< limit?



3

3/31/2006CS 3204 Spring 2006 13

Segmentation (2)
• Advantages: 

– little internal fragmentation “segments can be sized 
just right”

– easy sharing – can share entire code segment
– easy protection – only have to set access privileges 

for segment
– small number of segments means small segment 

table sizes
• Disadvantages:

– external fragmentation (segment requires physically 
contiguous addresses!)

– if segment is partially idle, can’t swap out

3/31/2006CS 3204 Spring 2006 14

Segmentation (3)
• Pure segmentation is no longer used

– (Most) RISC architectures don’t support segmentation at all
– Other architectures combine segmentation & paging 

• Intel x86 started out with segmentation, then added 
paging
– Segment number is carried in special set of registers (GS, ES, 

FS, SS), point to “selectors” kept in descriptor tables
– Instruction opcode determines with segment is used
– Today: segmentation unit is practically unused (in most 32-bit 

OS, including Pintos): all segments start at 0x00000000 and end 
at 0xFFFFFFFF

– Do not confuse with Pintos’s code/data segments, which are 
linear subregions of virtual addresses spanning multiple virtual 
pages

• Note: superpages are somewhat of a return to 
segmentation

3/31/2006CS 3204 Spring 2006 15

Combining Segmentation & Paging


