
1

CS 3204
Operating Systems

Godmar Back

Lecture 27

3/30/2006CS 3204 Spring 2006 2

Announcements
• Project 3 page table design document

– due tonight
– only data structures & comments, no code

• Project 3 due April 13
• If you have bugs left in Project 2, seek help

quickly
– To pass course, must have 95% passing P2 and

show reasonable effort on P3 & P4 – can’t do that
until P2 is done

– Vijay or I will help you go over your code and point
out problems

VM Design Issues

3/30/2006CS 3204 Spring 2006 4

N-bit Clock Algorithm

• 1-bit says was recently used or wasn’t
– But how recently?

• Idea: associate n-bit counter with page
– “age” or “act_count”
– have R-bit as before

• When hand passes page
– act_count >>= 2 aging
– act_count |= (R << (n-1)) recent access

• Replace page with lowest act_count

3/30/2006CS 3204 Spring 2006 5

of Page Faults vs Frame Allocation

• Desired behavior of paging algorithm: reduce page fault
rate below “acceptable level” as number of available
frames increases

• Q.: does increasing number of physical frames always
reduce page fault rate?
– A.: usually yes, but for some algorithms not guaranteed

(“Belady’s anomaly”)

3/30/2006CS 3204 Spring 2006 6

Page Buffering
• Select victim (as dictated by page replacement algorithm

– works as an add-on to any algorithm we discussed)
• But don’t evict victim – put victim on tail of victim queue.

Evict head of that queue instead.
• If victim page is touched before it moves to head of

victim queue, simply reuse frame
• Further improvement: keep queue of unmodified victims

(for quick eviction – aka free page list) and separate
queue of modified pages (aka modified list - allows write-
back in batch)

• Related issue: when should you write modified pages to
disk?
– Options: demand cleaning vs pre-cleaning (or pre-flushing)

2

3/30/2006CS 3204 Spring 2006 7

Local Replacement
• So far, considered global replacement algorithms

– Most widely used
• But could also divide memory in pools

– Per-process or per-user
• On frame allocation, requesting process will evict pages

from pool to which it belongs
• Advantage: Isolation

– No between-process interference
• Disadvantage: Isolation

– Can’t temporarily “borrow” frames from other pools
• Q.: How big should pools be?

– And when should allocations change?

P1used P2usedP2free

?

3/30/2006CS 3204 Spring 2006 8

When Virtual Memory works well

• Locality
– 80% of accesses are to 20% of pages
– 80% of accesses are made by 20% of code

• Temporal locality:
– Page that’s accessed will be accessed again in near

future
• Spatial locality:

– Prefetching pays off: if a page is accessed,
neighboring page will be accessed

• If VM works well, average access to all memory
is about as fast as access to physical memory

3/30/2006CS 3204 Spring 2006 9

VM Access Time & Page Fault Rate

• Consider expected access time in terms of fraction p of
page accesses that don’t cause page faults.

• Then 1-p is page fault frequency
• Assume p = 0.99, assume memory is 100ns fast, and

page fault servicing takes 10ms – how much slower is
your VM system compared to physical memory?

• access time = 99ns + 0.01*(10000100) ns ≈ 100,000ns
or 0.1ms
– Compare to 100ns or 0.0001ms speed ≈ about 1000x slowdown

• Conclusion: even low page fault rates lead to huge
slowdown

access time = p * memory access time
+ (1-p) * (memory access time + page fault service time)

3/30/2006CS 3204 Spring 2006 10

When Virtual Memory Does Not
Work Well

• System accesses a page, evicts another page
from its frame, and next access goes to just-
evicted page which must be brought in

• Worst case a phenomenon called Thrashing
– leads to constant swap-out/swap-in
– 100% disk utilization, but no process makes progress

• CPU most idle, memory mostly idle

3/30/2006CS 3204 Spring 2006 11

When does Thrashing occur?

• Process does exhibit locality, but is simply
too large
– Here: locality hurts us

• Process doesn’t exhibit locality
– Does not reuse pages

• Processes individually fit & exhibit locally,
but in total are too large for the system to
accommodate all

3/30/2006CS 3204 Spring 2006 12

What to do about Thrashing
• Buy more memory

– ultimately have to do that
– increasing memory sizes ultimately reason why

thrashing is nowadays less of a problem than in the
past – still OS must have strategy to avoid worst case

• Ask user to kill process
• Let OS decide to kill processes that are

thrashing
– Linux has an option to do that

• In many cases, still: reboot only time-efficient
option

