
1

CS 3204
Operating Systems

Godmar Back

Lecture 26

3/27/2006CS 3204 Spring 2006 2

Announcements
• Project 3 due April 13
• Project 3 help sessions tonight & tomorrow night

– McB 129 7-9pm
• Project 3 page table design document 

– due Wed March 29
– only data structures & comments, no code

• If you have bugs left in Project 2, seek help quickly
– To pass course, must have 95% passing P2 and show 

reasonable effort on P3 & P4 – can’t do that until P2 is done
– Vijay or I will help you go over your code and point out problems

• Read my 2 posts regarding copy_in issues on forum
• Midterm graded 

Page Replacement

3/27/2006CS 3204 Spring 2006 4

Page Replacement Algorithms
• Goal: want to minimize number of page faults 

(situations where a page must be brought in 
from disk.)
– Also: want to reduce their cost (ideally, evict those 

pages from their frames that are already on disk –
save writeback time)

• Number of algorithms have been developed
– Global replacement algorithms

• Treat frames used by all processes equally
– Local replacement

• Pool frames according to user or process when considering 
replacement

3/27/2006CS 3204 Spring 2006 5

Optimal or MIN Replacement
• To analyze algorithms, consider stream of accesses; 

each access falls into a given page, e.g. 
2  3  2  1  5  2  4  5  3  2  5  2

• Optimal (also known as MIN, or Belady’s algorithm)
– Replace the page that is accessed the farthest in the future, e.g. 

that won’t be accessed for the longest time
• Problem: don’t know what the future holds 

555555551
33333333333
222444222222
252354251232

3/27/2006CS 3204 Spring 2006 6

FIFO

• Evict oldest page:
– Problem: completely ignores usage pattern –

first pages loaded are often frequently 
accessed

244444111
55222223333
333355552222
252354251232



2

3/27/2006CS 3204 Spring 2006 7

LRU
• Evict least-recently-used page
• Great if past = future: become MIN!
• Major problem: would have to keep track of 

“recency” on every access, either timestamp, or 
move to front of a list
– infeasible

222444111
55555555333
333322222222
252354251232

3/27/2006CS 3204 Spring 2006 8

Clock
• Also known as NRU (Not Recently Used) or 2nd Chance
• Two ways to look at it:

– Approximates LRU
– FIFO, but keep recently used pages

• Use access (or reference bit)
– R=1 was accessed
– R=0 was not accessed

• Hand moves & clears R
• Hand stops when it finds R==0

R=1
R=1

R=0

R=0R=1

R=0

R=1

3/27/2006CS 3204 Spring 2006 9

Clock Example 1

3/27/2006CS 3204 Spring 2006 10

Clock Example 2
• In this example, assume hand advances only on 

allocation
– as you can do in Pintos

• In practice, use clock daemon that periodically scans 
pages and resets their access bits
– What if clock daemon scans too fast (all pages look unused)
– Too slow (all pages look used)

5*5*444*4*111*

2*22*22*2*2*33*3*3*

3*3*3*3*5*5*5*5*2*2*2*2*

252354251232
* means R=1 (page was accessed since last scan)

3/27/2006CS 3204 Spring 2006 11

Variations on Clock Algorithm

• 2-handed Clock
– If lots of frames, may need to scan many pages until 

one is found – so introduce second hand
• Leading hand clears ref bits
• Trailing hand evicts pages

• Enhanced Clock: exploit modified (or “dirty”) bit
– First find unreferenced & unmodified pages to evict
– Only if out of those, consider unreferenced & modified 

pages
– Clear reference bit as usual

3/27/2006CS 3204 Spring 2006 12

N-bit Clock Algorithm

• 1-bit says was recently used or wasn’t
– But how recently?

• Idea: associate n-bit counter with page
– “age” or “act_count”
– have R-bit as before

• When hand passes page
– act_count >>= 2                  aging
– act_count |= (R << (n-1))    recent access 

• Replace page with lowest act_count


