
1

CS 3204
Operating Systems

Godmar Back

Lecture 25

3/22/2006CS 3204 Spring 2006 2

Announcements

• Project 2 due Fri March 24
– 2 day extension to stay in synch with other CS 

3204 sections
• Midterm Fri March 24

– We start at 10:00am!
• Project 3 page table design document due 

Wed March 29
– See project page

3/22/2006CS 3204 Spring 2006 3

Accessing User Pointers & Paging

• Kernel must check that user pointers are valid
– P2: easy, just check range & page table

• Harder when swapping: 
– validity of a pointer may change between check & 

access (if another process sneaks in and selects 
frame mapped to an already checked page for 
eviction)

• Possible solution: 
– verify & lock, 

then access, 
then unlock

if (verify_user(addr))
process_terminate();

// what if addr’s frame is just now
// swapped out by another process?
*addr = value;

Physical Memory 
Management

3/22/2006CS 3204 Spring 2006 5

Physical Memory Management

• Aka frame table management
• Task: keep efficiently track of

which physical frames are used
• Allocate a frame when paging in, 

or eager loading
• Deallocate a frame when 

process exits or when page is 
evicted (later) 0

MAX_PHYSICAL

frames

3/22/2006CS 3204 Spring 2006 6

Approach 1: Bitmaps
• Use bitmap to represent free, 

used pages
• Sometimes division in user & 

kernel pool
• Pintos (palloc.c) does that: keeps 

two bitmaps
– Kernel pool: 010010
– User pool: 0000001

• You will manage user pool only

0

MAX_PHYSICAL

frames 0100100000001

us
er

 p
oo

l
ke

rn
el

 p
oo

l



2

3/22/2006CS 3204 Spring 2006 7

Approach 2: Buddy Allocator
• Logically 

subdivide
memory in 
power-of-two 
blocks

• Round up on 
allocation to 
next power 
of 2

• Split block on 
allocation 
(if necessary)

• Coalesce on deallocation (if possible)
– Coalescing can be delayed

• Used in Linux: allocation requests are always multiple of pages, max 
blocksize is 4MB

3/22/2006CS 3204 Spring 2006 8

Buddy Example - Allocation
64 KB

16KB16KB 32KB

16KB16KB 32KB

4KB 4KB 8KB16KB 32KB

4KB 4KB 8KB16KB 32KB

4KB 4KB16KB 32KB4KB4KB

Alloc (16KB)

Alloc (32KB)

Alloc (4KB)

Alloc (4KB)

Alloc (4KB)

3/22/2006CS 3204 Spring 2006 9

Buddy Example - Deallocation

64 KB

16KB

32KB

16KB

16KB 32KB

16KB 32KB

32KB

4KB 4KB16KB 32KB4KB4KB

Free()

Free()

Free()

Free()

Free()

32KB4KB 4KB4KB4KB

8KB 4KB4KB

3/22/2006CS 3204 Spring 2006 10

Fragmentation

• Def: The inability to use memory that is 
unused.

• Internal fragmentation:
– Not all memory inside an allocated unit is 

used; rest can’t be allocated to other users
• External fragmentation:

– Impossible to satisfy allocation request even 
though total amount of memory > size 
requested

3/22/2006CS 3204 Spring 2006 11

Internal Fragmentation
64 KB

16KB12KB 32KB

16KB 24KB

4KB 4KB 8KB

4KB 4KB 8KB

4KB 4KB 4KB3KB

Alloc (12KB)

Alloc (24KB)

Alloc (4KB)

Alloc (4KB)

Alloc (3MB)

12KB

12KB

12KB

12KB

24KB

24KB

24KB

3/22/2006CS 3204 Spring 2006 12

External Fragmentation

64 KB

16KB

32KB

16KB

16KB 32KB

16KB 32KB

32KB

4KB 4KB16KB 32KB4KB4KB

Free()

Free()

Free()

Free()

Free()

32KB4KB 4KB4KB4KB

8KB 4KB4KB

Have 8 KB free, but can‘t Alloc(8KB)

Have 12 KB free, but can‘t Alloc(12KB)

No external fragmentation

No external fragmentation



3

3/22/2006CS 3204 Spring 2006 13

Buddy allocator & fragmentation

• Q.: what average internal fragmentation in 
buddy allocator?
– in bitmap allocator?
– in first-fit allocator from project 0?

• Q.: external fragmentation?

3/22/2006CS 3204 Spring 2006 14

Page Size & Fragmentation
• How should a system’s architect choose the 

page size? – Trade-Off
• Large pages:

– Larger internal fragmentation
– (not an issue if most pages are full…)
– Page-in & write-back cost larger

• Small pages:
– Higher overhead to store page table (more entries to 

maintain)
• Modern architectures provide support for “super 

pages” – 2MB or 4MB

Page Replacement

3/22/2006CS 3204 Spring 2006 16

Page Replacement Algorithms

• Goal: want to minimize number of page 
faults (situations where a page must be 
brought in from disk.)
– Also: want to reduce their cost (ideally, evict 

those pages from their frames that are 
already on disk.)

• Number of algorithms have been 
developed

3/22/2006CS 3204 Spring 2006 17

Optimal & LRU

• Optimal:
– “know the future”
– Obviously impractical, just a benchmark for 

comparison/analysis
• FIFO – evict oldest page
• LRU – evict least recently used page

– Evict the frame that was accessed least recently.
– How do we know if a frame is accessed?

• Hard to know, approximate via clock algorithm
• Various versions of clock

3/22/2006CS 3204 Spring 2006 18

1-bit Clock Algorithm

• Note: frame pointer moves on allocation 
attempt



4

3/22/2006CS 3204 Spring 2006 19


