
1

CS 3204
Operating Systems

Godmar Back

Lecture 23

3/17/2006CS 3204 Spring 2006 2

Announcements

• Project 2 due Fri March 24
– 2 day extension to stay in synch with other CS

3204 sections
• Midterm Fri March 24

– We start at 10:00am!
• Project 3 page table design document due

Wed March 29
– See project page

3/17/2006CS 3204 Spring 2006 3

Recap
• Page tables store mapping information from virtual to

physical addresses, or to find non-resident pages
– Conditioned by process id, current mode (user/kernel) and kind

of access (read/write/execute)
• TLBs cache such mappings
• Page tables are consulted when TLB miss occurs

– Either all software, or in hardware
• OS must maintain its page table(s) and, if hardware TLB

reload is used, the page table (on x86 aka “page
directory + table”) that is consulted by MMU
– These two tables may or may not be one and the same

• The OS page table must have sufficient information to
load a page’s content from disk

Virtual Memory

Paging Techniques

3/17/2006CS 3204 Spring 2006 5

Demand paging

• Idea: only keep data in memory that’s
being used
– Needed for virtualization – don’t use up

physical memory for data processes don’t
access

• Important optimization:
– Lazy (on-demand) loading of pages the first

time they’re accessed

3/17/2006CS 3204 Spring 2006 6

ustack (1)

Lazy Loading

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

free

user (1)
user (1)

udata (1)

user (1)

Pintos loads the first process …
P1

Pintos then starts the first
process …

Process faults because code
page is not present …

Process faults when
touching address in data
segment …

stack page was allocated eagerly

data + code pages are noted
in page table, but no physical
frame has been allocated

2

3/17/2006CS 3204 Spring 2006 7

ustack (2)
ustack (1)

Stack Growth

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

free

user (1)
user (1)

udata (1)

user (1)

Pintos loads the first process …
P1

Pintos then starts the first
process …

Process faults because code
page is not present …

Process calls recursive
function or allocates large
local variable

page fault at about here

3/17/2006CS 3204 Spring 2006 8

Microscopic View of Stack Growth
push $ebp
sub $20, $esp
push $eax
push $ebx

push $ebp
sub $20, $esp
push $eax
push $ebx

0x8000
esp = 0x8004
esp = 0x8000

esp = 0x7FEC
esp = 0x7FE8

intr0e_stub:
…
call page_fault()
…
iret

intr0e_stub:
…
call page_fault()
…
iret

Page Fault!

void page_fault() {
get fault addr
determine if it’s close to user $esp
Yes: allocate page frame

install page in page table
No: terminate process

}

esp = 0x7FE4

• Can resume after page fault (and unless f→eip
is changed) this will retry the faulting instruction
– MMU will walk hardware page table again

3/17/2006CS 3204 Spring 2006 9

Fault Resumption
• Requires that faulting CPU instruction be restartable

– Most CPUs are designed this way
• Very powerful technique

– Entirely transparent to user program: user program is frozen in
time until OS decides what to do

• Can be used to emulate lots of things
– Programs that just ignore segmentation violations (!?) (here:

resume with next instruction – retrying would fault again)
– Subpage protection (protect entire page, take fault on access,

check if address was to an valid subpage region)
– Virtual machines (vmware, qemu – run entire OS on top of

another OS)
– Garbage collection
– Distributed Shared Memory

3/17/2006CS 3204 Spring 2006 10

Distributed Shared Memory
• Idea: allows accessing other machine’s memory as if it

were local
• Augment page table to be able to keep track of network

locations:
– local virtual address → (remote machine, remote address)

• On page fault, send request for data to owning machine,
receive data, allocate & write to local page, map local
page, and resume
– Process will be able to just use pointers to access all memory

distributed across machines – fully transparent
• Q.: how do you guarantee consistency?

– Lots of options

3/17/2006CS 3204 Spring 2006 11

ustack (1)

Heap Growth

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

free

user (1)
user (1)

udata (1)

user (1)

Pintos loads the first process …
P1

Pintos then starts the first
process …

Process faults because code
page is not present …

Process needs memory to
place malloc() objects in

Process calls sbrk(addr)udata (2)

Process faults when
touching new memory

3/17/2006CS 3204 Spring 2006 12

ustack (1)

mmap()

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

free

user (1)
user (1)

udata (1)

user (1)

Pintos loads the first process …
P1

Pintos then starts the first
process …

Process faults because code
page is not present …

Process opens file, calls
mmap(fd, addr)

ummap (1)

Process faults when
touching mapped file

Page fault handler allocs
page, maps it, reads
data from disk:

