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CS 3204
Operating Systems

Godmar Back

Lecture 23

3/17/2006CS 3204 Spring 2006 2

Announcements

• Project 2 due Fri March 24
– 2 day extension to stay in synch with other CS 

3204 sections
• Midterm Fri March 24

– We start at 10:00am!
• Project 3 page table design document due 

Wed March 29
– See project page
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Recap
• Page tables store mapping information from virtual to 

physical addresses, or to find non-resident pages
– Conditioned by process id, current mode (user/kernel) and kind 

of access (read/write/execute)
• TLBs cache such mappings
• Page tables are consulted when TLB miss occurs

– Either all software, or in hardware
• OS must maintain its page table(s) and, if hardware TLB 

reload is used, the page table (on x86 aka “page 
directory + table”) that is consulted by MMU
– These two tables may or may not be one and the same

• The OS page table must have sufficient information to 
load a page’s content from disk

Virtual Memory

Paging Techniques
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Demand paging

• Idea: only keep data in memory that’s 
being used
– Needed for virtualization – don’t use up 

physical memory for data processes don’t 
access

• Important optimization:
– Lazy (on-demand) loading of pages the first 

time they’re accessed
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Stack Growth 
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local variable

page fault at about here
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Microscopic View of Stack Growth
push $ebp
sub   $20, $esp
push $eax
push $ebx

push $ebp
sub   $20, $esp
push $eax
push $ebx

0x8000
esp = 0x8004
esp = 0x8000

esp = 0x7FEC
esp = 0x7FE8

intr0e_stub:
…
call page_fault()
…
iret

intr0e_stub:
…
call page_fault()
…
iret

Page Fault!

void page_fault() {
get fault addr
determine if it’s close to user $esp
Yes: allocate page frame

install page in page table
No: terminate process

}

esp = 0x7FE4

• Can resume after page fault (and unless f→eip
is changed) this will retry the faulting instruction
– MMU will walk hardware page table again
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Fault Resumption
• Requires that faulting CPU instruction be restartable

– Most CPUs are designed this way
• Very powerful technique

– Entirely transparent to user program: user program is frozen in 
time until OS decides what to do

• Can be used to emulate lots of things
– Programs that just ignore segmentation violations (!?) (here: 

resume with next instruction – retrying would fault again)
– Subpage protection (protect entire page, take fault on access, 

check if address was to an valid subpage region)
– Virtual machines (vmware, qemu – run entire OS on top of 

another OS)
– Garbage collection
– Distributed Shared Memory
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Distributed Shared Memory
• Idea: allows accessing other machine’s memory as if it 

were local
• Augment page table to be able to keep track of network 

locations: 
– local virtual address → (remote machine, remote address)

• On page fault, send request for data to owning machine, 
receive data, allocate & write to local page, map local 
page, and resume
– Process will be able to just use pointers to access all memory 

distributed across machines – fully transparent
• Q.: how do you guarantee consistency?

– Lots of options
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Heap Growth 
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Pintos loads the first process …
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Process faults because code 
page is not present …

Process needs memory to 
place malloc() objects in

Process calls sbrk(addr)udata (2)

Process faults when 
touching new memory
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mmap() 
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Process faults because code 
page is not present …

Process opens file, calls
mmap(fd, addr)

ummap (1)

Process faults when 
touching mapped file

Page fault handler allocs
page, maps it, reads
data from disk:


