
1

CS 3204
Operating Systems

Godmar Back

Lecture 22

3/15/2006CS 3204 Spring 2006 2

Announcements
• Project 2 due Wed March 22
• Midterm Fri March 24

– Can we start at 10:00am?
• Project 3 page table design document due Mon March

27
– More specific information to follow

• Reminder: minimum requirement to pass the class is a
working project 2
– reread section on Grading in Syllabus
– “working” means a >95% score as reported by “make grade”
– project 2 is required for projects 3 & 4

• Reading assignments:
– Stallings Chapter 7.1-7.4, 8.1-8.2

Virtual Memory

Page Tables & TLB
continued

3/15/2006CS 3204 Spring 2006 4

Page Tables as a Function

• Page Table: mathematical function “Trans”
• For each combination (process id, virtual_addr, mode,

type of access) must decide
– If access is permitted
– If permitted:

• if page is resident, use physical address
• if page is non-resident, page table has information on how to get the

page in memory
• CPU uses TLB for actual translation – page table feeds

the TLB on a TLB miss

Trans (with paging):
{ Process Ids } × { Virtual Addresses } × { user, kernel } × ℘({ read, write, execute })

→ { Physical Addresses } ∪ { INVALID } ∪ { Some Location On Disk }

Trans (with paging):
{ Process Ids } × { Virtual Addresses } × { user, kernel } × ℘({ read, write, execute })

→ { Physical Addresses } ∪ { INVALID } ∪ { Some Location On Disk }

3/15/2006CS 3204 Spring 2006 5

Address Translation & TLB
Virtual Address

TLB Lookup

Check Permissions

Physical AddressPage Fault Exception
“Protection Fault”

Page Table Walk

Page Fault Exception
“Page Not Present”

TLB Reload

Terminate Process

miss hit

restart instruction

page present else
okdenied

Load Page

done in hardware

done in OS software
done in software

or hardwaremachine-dependent

machine-independent
logic

3/15/2006CS 3204 Spring 2006 6

TLB Reloaded
• TLB small: typically only caches 64-2,048 entries

– What happens on a miss? – must consult (“walk”)
page table – TLB Reload or Refill

• TLB Reload in software (MIPS)
– Via TLB miss handlers – OS designer can pick any

page table layout – page table is only read & written
by OS

• TLB Reload in hardware (x86)
– Hardware & software must agree on page table layout

inasmuch as TLB miss handling is concerned – page
table is read by CPU, written by OS

• Some architectures allow either (PPC)

2

3/15/2006CS 3204 Spring 2006 7

Page Tables vs TLB Consistency
• No matter which method is used, OS must ensure that

TLB & page tables are consistent
– On multiprocessor, this may require “TLB shootdown”

• For software-reloaded TLB: relatively easy
– TLB will only contain what OS handlers place into it

• For hardware-reloaded TLB: two choices
– Use same data structures for page table walk & page loading

(hardware designers reserved bits for OS’s use in page table)
– Use a layer on top (facilitates machine-independent

implementation) – this is recommended approach for Pintos
Project 3

• In this case, must update actual page table (on x86: “page
directory”) that is consulted by MMU during page table walk

• Code is already written for you in pagedir.c

3/15/2006CS 3204 Spring 2006 8

Hardware/Software Split in Pintos

CPU cr3

Machine-dependent Layer:
pagedir.c code

Machine-dependent Layer:
pagedir.c code

Machine-independent Layer:
your code & data structures

Machine-independent Layer:
your code & data structures

3/15/2006CS 3204 Spring 2006 9

Representing Page Tables

• Choice impacts speed of access vs size
needed to store mapping information:
– Simple arrays (PDP-11, VAX)

• Fast, but space requirement not feasible for large,
non-contiguous address spaces

– Search trees (aka “hierarchical” or “multi-
level” page tables)

– Hash table

3/15/2006CS 3204 Spring 2006 10

Example: x86 Address Translation

• Two-level page table
• Source: [IA32-v3] 3.7.1

3/15/2006CS 3204 Spring 2006 11

Two-level Page Table

• Q.: how many pages are needed in
– Best case
– Worst case? (what is the worst case?)

3/15/2006CS 3204 Spring 2006 12

Example: x86 Page Table Entry

• Note: if bit 0 is 0 (“page not present”) MMU will
ignore bits 1-31 – OS can use those at will

3

3/15/2006CS 3204 Spring 2006 13

Page Table Management on Linux

• Interesting history:
– Linux was originally x86 only with 32bit

physical addresses. Its page table matched
the one used by x86 hardware

– Since:
• Linux has been ported to other architectures
• x86 has grown to support 36bit physical addresses

(PAE) – required 3-level page table

• Linux’s now uses 4-level page table to
support 64-bit architectures

3/15/2006CS 3204 Spring 2006 14

Linux Page Tables (2)

• On x86 – hardware == software
– On 32-bit (no PAE) middle directory disappears

• With four-level, “PUD” page upper directory is added (not shown)

3/15/2006CS 3204 Spring 2006 15

Inverted Page Tables

• Alternative to multi-
level page tables –
size is O(physical
memory)

