CS 3204
Operating Systems

Lecture 22
Godmar Back

Virgini

mTec_h

Virtual Memory

Page Tables & TLB
continued

_vug] nia

mTed]

Address Translation & TLB

Virtual Address done in hardware
. . l done in OS software
restart instruction
TLB Lookup done in software

machine-dependent

miss or hardware

Page Table Walk
Check Permissions

page present denied ok

TLB Reload Page Fault Exception Page Fault Exception Physical Address

“Page Not Present” “Protection Fault”
machine-independent |
logic
Load Page Terminate Process
v“gmm‘a.r och CS 3204 Spring 2006 3/15/2006 5

Announcements

« Project 2 due Wed March 22
« Midterm Fri March 24
— Can we start at 10:00am?
. g’;oject 3 page table design document due Mon March

— More specific information to follow
« Reminder: minimum requirement to pass the class is a
working project 2
— reread section on Grading in Syllabus
— “working” means a >95% score as reported by “make grade”
— project 2 is required for projects 3 & 4
« Reading assignments:
— Stallings Chapter 7.1-7.4, 8.1-8.2

v“gmm‘a.r l CS 3204 Spring 2006 3/15/2006 2

Page Tables as a Function

Trans (with paging):
{ Process Ids } x { Virtual Addresses } x { user, kernel } x o ({ read, write, execute })

— {Physical Addresses } U { INVALID } U { Some Location On Disk }

« Page Table: mathematical function “Trans”
« For each combination (process id, virtual_addr, mode,
type of access) must decide
— If access is permitted
— If permitted:
« if page is resident, use physical address
« if page is non-resident, page table has information on how to get the
page in memory
« CPU uses TLB for actual translation — page table feeds
the TLB on a TLB miss

V“Emmla.r wch CS 3204 Spring 2006 3/15/2006 4

TLB Reloaded

* TLB small: typically only caches 64-2,048 entries

— What happens on a miss? — must consult (“walk”)
page table — TLB Reload or Refill

* TLB Reload in software (MIPS)

— Via TLB miss handlers — OS designer can pick any
page table layout — page table is only read & written
by OS

* TLB Reload in hardware (x86)

— Hardware & software must agree on page table layout
inasmuch as TLB miss handling is concerned — page
table is read by CPU, written by OS

» Some architectures allow either (PPC)

v“gmm‘a.r och CS 3204 Spring 2006 3/15/2006 6

Page Tables vs TLB Consistency

* No matter which method is used, OS must ensure that
TLB & page tables are consistent
— On multiprocessor, this may require “TLB shootdown”

« For software-reloaded TLB: relatively easy
— TLB will only contain what OS handlers place into it

» For hardware-reloaded TLB: two choices

— Use same data structures for page table walk & page loading
(hardware designers reserved bits for OS’s use in page table)
— Use a layer on top (facilitates machine-independent
implementation) — this is recommended approach for Pintos
Project 3
« In this case, must update actual page table (on x86: “page
directory”) that is consulted by MMU during page table walk
« Code is already written for you in pagedir.c

vugmmla'l'ed] CS 3204 Spring 2006 3/15/2006 7

Representing Page Tables

« Choice impacts speed of access vs size
needed to store mapping information:
— Simple arrays (PDP-11, VAX)

« Fast, but space requirement not feasible for large,
non-contiguous address spaces

— Search trees (aka “hierarchical” or “multi-
level” page tables)

— Hash table

vugmmla'l'ed] CS 3204 Spring 2006 3/15/2006 9

Two-level Page Table

Figure £4 A Two-Level Hicrurchical Page Table

¢ Q.: how many pages are needed in

— Best case
— Worst case? (what is the worst case?)
vuglnmla'fed] CS 3204 Spring 2006 3/15/2006 11

Hardware/Software Split in Pintos

Machine-independent Layer:

your code & data structures D' D D’ l:l
[o O-0O O-0O

Machine-dependent Layer:
pagedir.c code

CPU cr3
——Virginia .
mTECh CS 3204 Spring 2006 3/15/2006 8

Example: x86 Address Translation

Linear Address
3 nN 121 [
| Dwectory| Toble | Offsel
A2 4-KByte Page

Ko Ao Poge Task Lol Prysical Address)
Page Divectony |
—={ Page-Takéa Entry ./‘I--
| Dwractory Entry =
- "
A . 1024 PDE » 1024 PTE = 27 Pages
| o PoBRy

2 bits aligned onto & 4-KByte boundary

» Two-level page table
* Source: [IA32-v3] 3.7.1
vug]nmla'red] CS 3204 Spring 2006 3/15/2006 10

Example: x86 Page Table Entry

Page-Table Entry (4-KByte Page)
a 1211

Page Base Address avat o

Prasart

* Note: if bit 0 is 0 (“page not present”) MMU will
ignore bits 1-31 — OS can use those at will

vugmmla'l'ed] CS 3204 Spring 2006 3/15/2006 12

Page Table Management on Linux

* Interesting history:

— Linux was originally x86 only with 32bit
physical addresses. Its page table matched
the one used by x86 hardware

— Since:

« Linux has been ported to other architectures
* x86 has grown to support 36bit physical addresses
(PAE) — required 3-level page table
« Linux’s now uses 4-level page table to
support 64-bit architectures

V“Emmla.red] CS 3204 Spring 2006 3/15/2006 13

Linux Page Tables (2)

Vit sddro

okl Dbratory | Vbl Dressory | Page Tde | Otk

[
el

[———
* On x86 — hardware == software
— On 32-bit (no PAE) middle directory disappears
« With four-level, “PUD" page upper directory is added (not shown)

V“Emmla.red] CS 3204 Spring 2006 3/15/2006 14

Inverted Page Tables

Virtusd Akl
i

[rove e [0

o i [

Tt = bty Paged WD Chais
Banstion| |

« Alternative to multi- j
level page tables —
size is O(physical s ket
memory) et P ot "o hdien

e eotry far e
sl s (e

V“Emmla.red] CS 3204 Spring 2006 3/15/2006 15

