
1

CS 3204
Operating Systems

Godmar Back

Lecture 21

3/13/2006CS 3204 Spring 2006 2

Announcements
• Project 2 due Wed March 22:
• You should have read all documentation by now & probably implemented steps

suggested in Section 4.2 (including basic syscall framework)
• Key parts:

– argument passing and proper synchronization between parent & child on startup
– exit()/wait() synchronization
– other syscalls, including file descriptor management (a bit repetitive)
– robustness: verifying user addresses – you can do this last, but think it through first
– robustness: proper termination of misbehaved processes

• Midterm Fri March 24
• Project 3 page table design document due Mon March 27

– More specific information to follow
• Reminder: minimum requirement to pass the class is a working project 2

– reread section on Grading in Syllabus
– “working” means a >95% score as reported by “make grade”
– project 2 is required for projects 3 & 4

• Reading assignments:
– Stallings Chapter 7.1-7.4, 8.1-8.2

Virtual Memory

Page Tables & TLB

3/13/2006CS 3204 Spring 2006 4

Goals for Virtual Memory

• Virtualization
– Maintain illusion that each process has entire

memory to itself
– Allow processes access to more memory than

is really in the machine (or: sum of all memory
used by all processes > physical memory)

• Protection
– make sure there’s no way for one process to

access another process’s data

3/13/2006CS 3204 Spring 2006 5

Context Switching

Process 1

Process 2

Kernel

user mode

kernel mode

P1 starts P2 starts P1 exits P1 exits

3/13/2006CS 3204 Spring 2006 6

ustack (1)

Process 1 Active
in user mode

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

free

user (1)
user (1)

udata (1)

user (1)
user (2)
user (2)
user (2)

access possible in user mode

P1

2

3/13/2006CS 3204 Spring 2006 7

ustack (1)

Process 1 Active
in kernel mode

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

free

user (1)
user (1)

udata (1)

user (1)
user (2)
user (2)
user (2)

access possible in user mode

access requires kernel mode

P1

3/13/2006CS 3204 Spring 2006 8

ustack (2)

Process 2 Active
in kernel mode

kernel
kernel
kernel
kernel

user (1)
user (1)
user (1)

ucode (2)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

freeuser (2)
user (2)

udata (2)

user (2)

access possible in user mode

access requires kernel mode

P2

3/13/2006CS 3204 Spring 2006 9

ustack (2)

Process 2 Active
in user mode

kernel
kernel
kernel
kernel

user (1)
user (1)
user (1)

ucode (2)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

freeuser (2)
user (2)

udata (2)

user (2)

access possible in user mode

P2

3/13/2006CS 3204 Spring 2006 10

Page Tables
• How are the arrows in previous pictures

represented?
– Page Table: mathematical function “Trans”

• Typically have
– Trans(pi, va, user, *) = Trans(pi, va, kernel, *)

OR
Trans(pi, va, user, *) = INVALID

– User virtual addresses can be accessed in kernel
mode

Trans:
{ Process Ids } × { Virtual Addresses } × { user, kernel } × ℘({ read, write, execute })

→ { Physical Addresses } ∪ { INVALID }

Trans:
{ Process Ids } × { Virtual Addresses } × { user, kernel } × ℘({ read, write, execute })

→ { Physical Addresses } ∪ { INVALID }

3/13/2006CS 3204 Spring 2006 11

Sharing
• We get user-level sharing between processes p1 and p2 if

– Trans(p1, va, user, *) = Trans(p2, va, user, *)
• Shared physical address doesn’t need to be mapped at

same virtual address, could be mapped at va in p1 and vb in
p2:
– Trans(p1, va, user, *) = Trans(p2, vb, user, *)

• Can also map with different permissions: say p1 can read &
write, p2 can only read
– Trans(p1, va, user, {read, write}) = Trans(p2, vb, user, {read})

• In Pintos (and many OS) the kernel virtual address space
is shared among all processes & mapped at the same
address:
– Trans(pi, va, kernel, *) = Trans(pk, va, kernel, *) for all processes pi

and pk and va in [0xC0000000, 0xFFFFFFFF]
3/13/2006CS 3204 Spring 2006 12

Per-Process Page Tables

• Can either keep track of all mappings in a single
table, or can split information between tables
– one for each process
– mathematically: a projection onto a single process

• For each process pi define a function PTransi as
– PTransi (va, *, *) = Trans(pi, va, user, *)

• Implementation: associate representation of this
function with PCB, e.g. per-process hash table
– Entries are called “page table entries” or PTEs

3

3/13/2006CS 3204 Spring 2006 13

Per-Process Page Tables (2)

• Common misconception
– “User processes use ‘user page table’ and kernel

uses ‘kernel page table’” – as if those were two tables
• Not so: mode switch (interrupt, system call) does

not change the page table that is used
– It only activates those entries that require kernel

mode within the current process’s page table
• Consequence: kernel code also cannot access

user addresses that aren’t mapped

3/13/2006CS 3204 Spring 2006 14

Non-Resident Pages

• When implementing virtual memory, some
of a process’s pages can be swapped out
– Or may not yet have been faulted in

• Need to record that in page table:

Trans (with paging):
{ Process Ids } × { Virtual Addresses } × { user, kernel } × ℘({ read, write, execute })

→ { Physical Addresses } ∪ { INVALID } ∪ { Some Location On Disk }

Trans (with paging):
{ Process Ids } × { Virtual Addresses } × { user, kernel } × ℘({ read, write, execute })

→ { Physical Addresses } ∪ { INVALID } ∪ { Some Location On Disk }

3/13/2006CS 3204 Spring 2006 15

Implementing Page Tables

• Many, many variants possible
• Done in combination of hardware &

software
– Hardware part: dictated by architecture
– Software part: up to OS designer

• Machine-dependent layer that implements
architectural constraints (what hardware expects)

• Machine-independent layer that manages page
tables

• Must understand how TLB works first
3/13/2006CS 3204 Spring 2006 16

TLB: Translation Look-Aside Buffer
• Virtual-to-physical translation is part of every

instruction (why not only load/store instructions?)
– Thus must execute at CPU pipeline speed

• TLB caches a number of translations in fast,
fully-associative memory
– typical: 95% hit rate (locality of reference principle)

0xC0002345

0x000023450x000030xC0003R-- K

PPNVPNPerm

………

0x000020xC0002R-X K

0x000010xC0001RWX K

0x000000xC0000RWX K

TLBTLB

VPN: Virtual Page Number

PPN: Physical Page Number

Offset

3/13/2006CS 3204 Spring 2006 17

TLB Management
• Note: on previous slide example, TLB entries did

not have a process id
– As is true for x86

• Then: if process changes, some or all TLB
entries may become invalid
– X86: flush entire TLB on process switch (refilling is

expensive!)
– NB: “flush” here means discard

• Some architectures store process id in TLB entry
(MIPS)
– Flushing (some) entries only necessary when process

id reused

3/13/2006CS 3204 Spring 2006 18

Address Translation & TLB
Virtual Address

TLB Lookup

Check Permissions

Physical AddressPage Fault Exception
“Protection Fault”

Page Table Walk

Page Fault Exception
“Page Not Present”

TLB Reload

Terminate Process

miss hit

restart instruction

page present else
okdenied

Load Page

done in hardware

done in OS software
done in software

or hardware

