CS 3204
Operating Systems

Lecture 21
Godmar Back

Virgini

mTedl

Announcements

* Project 2 due Wed March 22:
* You should have read all documentation by now & probabl{ implemented steps
suggested in Section 4.2 (including basic syscall framework)
+ Key parts:
— argument passing and proper synchronization between parent & child on startup
— exit()/wait() synchronization
~ other syscalls, including file descriptor management (a bit repetitive)
— robustness: verifying user addresses — you can do this last, but think it through first

- proper ination of
« Midterm Fri March 24
« Project 3 page table design document due Mon March 27
— More specific information to follow
+ Reminder: minimum requirement to pass the class is a working project 2
~ reread section on Grading in Syllabus
~ “working” means a >95% score as reported by “make grade”
— project 2 is required for projects 3 & 4
+ Reading assignments:
— Stallings Chapter 7.1-7.4, 8.1-8.2

Virgini

mTedl

CS 3204 Spring 2006 3/13/2006 2

Virtual Memory

Page Tables & TLB

_vug] nia

mTed]

Goals for Virtual Memory

* Virtualization
— Maintain illusion that each process has entire
memory to itself
— Allow processes access to more memory than
is really in the machine (or: sum of all memory
used by all processes > physical memory)

* Protection

— make sure there’s no way for one process to
access another process’s data

_Vug:inia

mTed]

CS 3204 Spring 2006 3/13/2006 4

Context Switching

Process 1
Process 2 —_— —_—
user mode
kernel mode
Kernel — o o o -
P1 starts P2 starts Plexits P1 exits

v@m‘mm CS 3204 Spring 2006 3/13/2006 5

FFFFFFFF H
o1 Process 1 Active
0400000 in user mode
@
(O]
-
C0000000_,
lustack (1)
3
® used
access possible in user mode
0 —
==V/irgini i
uglmim'l'ed] CS 3204 Spring 2006 3/13/2006 6

"""" Process 1 Active
C0400000 in kernel mode
o access requires kernel mode
O]
€0000000_ free
e}
g used
access possible in user mode
0 —
=Vm'[b_ch CS 3204 Spring 2006 3/13/2006 7
T by Process 2 Active

in user mode

C0400000

1GB

C0000000_, free

Process 2 Active
in kernel mode

—

C0400000

[aa)
O
—

C0000000

—

3GB

access possible in user mode

0 —
— U“B’mamh CS 3204 Spring 2006 3/13/2006 8

Page Tables

« How are the arrows in previous pictures
represented?
— Page Table: mathematical function “Trans”

« Typically have
— Trans(p;, V,, user, *) = Trans(p;, v,, kernel, *)
OR

Trans(p;, V,, user, *) = INVALID
— User virtual addresses can be accessed in kernel
mode

= virginia CS 3204 Spring 2006 3/13/2006 10

3
o used
access possible in user mode
0 —
[Umm CS 3204 Spring 2006 3/13/2006 9
==

Sharing

* We get user-level sharing between processes p, and p, if
— Trans(p,, Vv,, user, *) = Trans(p,, v,, user, *)

» Shared physical address doesn’t need to be mapped at
same virtual address, could be mapped at v, in p, and v, in
P2

— Trans(p,, V,, user, *) = Trans(p,, v, user, *)
» Can also map with different permissions: say p, can read &
write, p, can only read
— Trans(p,, v,, user, {read, write}) = Trans(p,, v, user, {read})

In Pintos (and many OS) the kernel virtual address space

is shared among all processes & mapped at the same

address:

— Trans(p, v,, kernel, *) = Trans(p,, v,, kernel, *) for all processes p,
and p,and v, in [0xC0000000, OxFFFFFFFF]

='v‘ugjnia

CS 3204 Spring 2006 3/13/2006 11

P

[TR

Per-Process Page Tables

¢ Can either keep track of all mappings in a single

table, or can split information between tables

— one for each process

— mathematically: a projection onto a single process

For each process p; define a function PTrans; as

— PTrans; (v, * *) = Trans(p;, v,, user, *)

« Implementation: associate representation of this
function with PCB, e.g. per-process hash table
— Entries are called “page table entries” or PTEs

CS 3204 Spring 2006 3/13/2006 12

Per-Process Page Tables (2) Non-Resident Pages

« Common misconception * When implementing virtual memory, some

— “User processes use ‘user page table’ and kernel of a process’s pages can be swapped out
uses ‘kernel page table™ — as if those were two tables .
. . — Or may not yet have been faulted in
» Not so: mode switch (interrupt, system call) does .)
not change the page table that is used + Need to record that in page table:

— It only activates those entries that require kernel
mode within the current process’s page table
» Consequence: kernel code also cannot access
user addresses that aren’t mapped

Trans (with paging):
{ Process Ids } x { Virtual Addresses } x { user, kernel } x @ ({ read, write, execute })

— { Physical Addresses } U { INVALID } U { Some Location On Disk }

_V“Bmﬁ.r och CS 3204 Spring 2006 3/13/2006 13 _V“Bmﬁ.r och CS 3204 Spring 2006 3/13/2006 14
Implementing Page Tables TLB: Translation Look-Aside Buffer
* Virtual-to-physical translation is part of every
< Many, many variants possible instruction (why not only load/store instructions?)
« Done in combination of hardware & — Thus must execute at CPU pipeline speed

* TLB caches a number of translations in fast,

software fully-associative memory
— Hardware part: dictated by architecture — typical: 95% hit rate (locality of reference principle)
— Software part: up to OS designer - = — 0xC0002345
erm \Ji
« Machine-dependent layer that implements VPN: Virtual Page Number
architectural constraints (what hardware expects) xi E g"isggi gxggggg
* Machine-independent layer that manages page XK ozcoooz oiooooz B Offset
tables -
. R-- K | 0xC0003 0x00003
 Must understand how TLB works first : : 0x00002345
—— i _— ey PPN: Physical Page Number
Virginia CS 3204 Spring 2006 3/13/2006 15 Virginia CS 3204 Spring 2006 3/13/2006 16

mTﬁ;h mTﬁ;h

TLB Management Address Translation & TLB

« Note: on previous slide example, TLB entries did viral fddress done in hardware
not have a process id restart instruction done in OS software

. TLB Lookup done in software

— As is true for x86 miss hit or hardware

» Then: if process changes, some or all TLB bae Table Walk
entries may become invalid age Tabe e

Check Permissions
— X86: flush entire TLB on process switch (refilling is page present else)
expensivel) denied ok

— NB: *flush” here means discard TLB Reload Page Fault Exception Page Fault Exception Physical Address

» Some architectures store process id in TLB entry “Page Not Present’ “Protection Fault’
(MIPS) | |
— Flushing (some) entries only necessary when process L |cadPage Terminate Process
id reused

v“@ﬂm‘a.r och CS 3204 Spring 2006 3/13/2006 17 v“@ﬂm‘a.r och CS 3204 Spring 2006 3/13/2006 18

