
1

CS 3204
Operating Systems

Godmar Back

Lecture 2

1/20/2006CS 3204 Spring 2006 2

Announcements

• Prerequisite Forms
• My office hours: M/W 3-5pm
• Vijay: T/Th 2-4pm

1/20/2006CS 3204 Spring 2006 3

Outline for today

• Motivation for teaching OS
• Brief history
• A survey of core issues OS address
• What you should get out of this class

1/20/2006CS 3204 Spring 2006 4

Why are OS interesting?
• OS are “magic”

– Most people don’t understand them – including 
sysadmins and computer scientists!

• OS are incredibly complex systems
– “Hello, World” – program really 1 million lines of code

• Studying OS is learning how to deal with 
complexity
– Abstractions (+interfaces)
– Modularity (+structure)
– Iteration (+learning from experience)

1/20/2006CS 3204 Spring 2006 5

What does an OS do?

• Software layer that sits
between applications
and hardware

• Performs services
– Abstracts hardware
– Provides protection
– Manages resources

Hardware
CPU Memory Network Disk

Operating System

gcc csh X11

1/20/2006CS 3204 Spring 2006 6

OS vs Kernel
• Can take a wider view or a narrower definition what an 

OS is
• Wide view: Windows, Linux, Mac OSX are operating 

systems
– Includes system programs, system libraries, servers, shells, GUI

etc.
• Narrow definition:

– OS often equated with the kernel.
– The Linux kernel; the Windows executive – the special piece of 

software that runs with special privileges and actually controls
the machine.

• In this class, usually mean the narrow definition.
• In real life, always take the wider view. (Why?)



2

1/20/2006CS 3204 Spring 2006 7

Evolution of OS

• OSs as a library
– Abstracts away hardware, provide neat 

interfaces
• Makes software portable; allows software evolution

– Single user, single program computers
• No need for protection: no malicious users, no 

interactions between programs
– Disadvantages of uniprogramming model

• Expensive
• Poor utilization

1/20/2006CS 3204 Spring 2006 8

Evolution of OS (II)

• Invent multiprogramming
– First multi-programmed batch systems, then time-

sharing systems 
• Idea: 

– Load multiple programs in memory
– Do something else while one program is waiting, don’t 

sit idle (see next slide)
• Complexity increases:

– What if programs interfer with each other (wild writes)
– What if programs don’t relinguish control (infinite loop)

1/20/2006CS 3204 Spring 2006 9

Single Program vs
Multiprogramming

1/20/2006CS 3204 Spring 2006 10

Protection
• Multiprogramming requires isolation
• OS must protect/isolate applications from each 

other, and OS from applications
• This requirement is absolute

– In Pintos also: if one application crashes, kernel 
should not! Bulletproof.

• Three techniques
– Preemption
– Interposition
– Privilege 

1/20/2006CS 3204 Spring 2006 11

Protection #1: Preemption

• Resource can be given to program and access 
can be revoked
– Example: CPU, Memory, Printer, “abstract” resources: 

files, sockets
• CPU Preemption using interrupts

– Hardware timer interrupt invokes OS, OS checks if 
current program should be preempted, done every 
1ms in Linux

– Solves infinite loop problem!
• Q.: Does it work with all resources equally?

1/20/2006CS 3204 Spring 2006 12

Protection #2: Interposition

• OS hides the hardware
• Application have to go through OS to 

access resources
• OS can interpose checks:

– Validity (Address Translation)
– Permission (Security Policy)
– Resource Constraints (Quotas)



3

1/20/2006CS 3204 Spring 2006 13

Protection #3: Privilege
• Two fundamental modes:

– “kernel mode” – privileged
• aka system, supervisor or monitor mode 
• Intel calls its PL0, Privilege Level 0 on x86

– “user mode” – non-privileged
• PL3 on x86

• Bit in CPU – controls operation of CPU
– Protection operations can only be performed in kernel 

mode. Example: hlt
– Carefully control transitions between user & kernel 

mode

1/20/2006CS 3204 Spring 2006 14

OS as a Resource Manager

• OS provides illusions, examples:
– every program is run on its own CPU
– every program has all the memory of the 

machine (and more)
– every program has its own I/O terminal

• “Stretches” resources
– Possible because resource usage is bursty, 

typically
• Increases utilization

1/20/2006CS 3204 Spring 2006 15

Resource Management (2)
• Multiplexing increases complexity 
• Car Analogy (by Rosenblum):

– Dedicated road per car would be incredibly inefficient, so cars 
share freeway. Must manage this.

– (abstraction) different lanes per direction
– (synchronization) traffic lights
– (increase capacity) build more roads

• More utilization creates contention
– (decrease demand) slow down
– (backoff/retry) use highway during off-peak hours
– (refuse service, quotas) force people into public transportation
– (system collapse) traffic jams

1/20/2006CS 3204 Spring 2006 16

Resource Management (3)

• OS must decide who gets to use what 
resource

• Approach 1: have admin (boss) tell it
• Approach 2: have user tell it

– What if user lies? What if user doesn’t know?
• Approach 3: figure it out through feedback

– Problem: how to tell power users from 
resource hogs?

1/20/2006CS 3204 Spring 2006 17

Goals for Resource Management

• Fairness
– Assign resources equitably

• Differential Responsiveness
– Cater to individual applications’ needs

• Efficiency
– Maximize throughput, minimize response 

time, support as many apps as you can
• These goals are often conflicting.

– All about trade-offs


