
1

CS 3204
Operating Systems

Godmar Back

Lecture 18

2/28/2006CS 3204 Spring 2006 2

Announcements
• Project 1 is due Tonight, 11:59pm

– Honor code pledge: please include in design
document

– Please do a “make clean” before tarring up
• Office hours today 3-4
• Project 2 Help Sessions

– Wed Mar 1 & Th Mar 2 from 7 to 9pm in MCB 126
• Reading assignments:

– Stallings Chapter 7.1-7.4 (but read Pintos Project 2
documentation first!)

2/28/2006CS 3204 Spring 2006 3

CPU Scheduling Terminology
• A job (sometimes called a task, or a job instance)

– Activity that’s scheduled: process or part of a process
• Arrival time: time when job arrives
• Start time: time when job actually starts
• Finish time: time when job is done
• Completion time (aka Turn-around time)

– Finish time – Arrival time
• Response time

– Time when user sees response – Arrival time
• Execution time (aka cost): time a job needs to execute

CPUI/OCPU burstwaiting waiting

Arrival Time Start Time Finish Time

Completion TimeResponse Time

2/28/2006CS 3204 Spring 2006 4

Scheduling: Recap

• FCFS: simple
– unfair to short jobs & poor I/O performance

(convoy effect)
• RR: helps short jobs

– loses when jobs are equal length
• SPN: optimal average completion time

– unfair to long jobs
– requires knowing (or guessing) the future

2/28/2006CS 3204 Spring 2006 5

Multi-Level Feedback Queue
Scheduling

• Kleinrock 1969
• Want:

– preference for short jobs (tends to lead to good I/O utilization)
– longer timeslices for CPU bound jobs (reduces context-switching

overhead)
• Problem:

– Don’t know type of each process – algorithm needs to figure out
• Use multiple queues

– queue determines priority
– usually combined with static priorities (nice values)
– many variations of this

2/28/2006CS 3204 Spring 2006 6

MLFQS

MIN

MAX

H
ig

he
r P

rio
rit

y

4

3

1

2

Lo
ng

er
 T

im
es

lic
es

Process that
use up their
time slice move
down

Processes start
in highest queue

Higher priority queues are served before lower-priority
ones - within highest-priority queue, round-robin

Processes
that starve

move up

Only ready processes are in this queue - blocked processes
leave queue and reenter same queue on unblock

2

2/28/2006CS 3204 Spring 2006 7

Case Study: Linux Scheduler

• Variant of MLFQS
• 140 priorities

– 0-99 “realtime”
– 100-140 nonrealtime

• Dynamic priority
computed from static
priority (nice) plus
“interactivity bonus”

0

100

120

140

“Realtime”
processes
scheduled
based on
static priority
SCHED_FIFO
SCHED_RR

Processes
scheduled
based on
dynamic
priority
SCHED_OTHER

nice=0

nice=19

nice=-20

2/28/2006CS 3204 Spring 2006 8

Linux Scheduler (2)

• Instead of recomputation loop, recompute
priority at end of each timeslice
– dyn_prio = nice + interactivity bonus (-5…5)

• Interactivity bonus depends on sleep_avg
– measures time a process was blocked

• 2 priority arrays (“active” & “expired”) in
each runqueue (Linux calls ready queues
“runqueue”)

2/28/2006CS 3204 Spring 2006 9

Linux Scheduler (3)
struct prio_array {

unsigned int nr_active;
unsigned long bitmap[BITMAP_SIZE];
struct list_head queue[MAX_PRIO];

};
typedef struct prio_array prio_array_t;

/* find the highest-priority ready thread */
idx = sched_find_first_bit(array->bitmap);
queue = array->queue + idx;
next = list_entry(queue->next, task_t, run_list);

struct prio_array {
unsigned int nr_active;
unsigned long bitmap[BITMAP_SIZE];
struct list_head queue[MAX_PRIO];

};
typedef struct prio_array prio_array_t;

/* find the highest-priority ready thread */
idx = sched_find_first_bit(array->bitmap);
queue = array->queue + idx;
next = list_entry(queue->next, task_t, run_list);

/* Per CPU runqueue */
struct runqueue {
prio_array_t *active;
prio_array_t *expired;
prio_array_t arrays[2];
…
}

/* Per CPU runqueue */
struct runqueue {
prio_array_t *active;
prio_array_t *expired;
prio_array_t arrays[2];
…
}

• Finds highest-priority ready thread quickly
• Switching active & expired arrays at end of epoch is

simple pointer swap (“O(1)” claim)
2/28/2006CS 3204 Spring 2006 10

Linux Timeslice Computation

• Linux scales static priority to timeslice
– Nice [-20 … 0 … 19] maps to

[800ms … 100 ms … 5ms]
• Various tweaks:

– “interactive processes” are reinserted into
active array even after timeslice expires

• Unless processes in expired array are starving
– processes with long timeslices are round-

robin’d with other of equal priority at sub-
timeslice granularity

2/28/2006CS 3204 Spring 2006 11

Linux SMP Load Balancing
• Runqueue is per CPU
• Periodically, lengths of

runqueues on different
CPU is compared
– Processes are migrated to

balance load
• Migrating requires locks

on both runqueues

static void double_rq_lock(
runqueue_t *rq1,
runqueue_t *rq2)

{
if (rq1 == rq2) {

spin_lock(&rq1->lock);
} else {

if (rq1 < rq2) {
spin_lock(&rq1->lock);
spin_lock(&rq2->lock);

} else {
spin_lock(&rq2->lock);
spin_lock(&rq1->lock);

}
}

}

static void double_rq_lock(
runqueue_t *rq1,
runqueue_t *rq2)

{
if (rq1 == rq2) {

spin_lock(&rq1->lock);
} else {

if (rq1 < rq2) {
spin_lock(&rq1->lock);
spin_lock(&rq2->lock);

} else {
spin_lock(&rq2->lock);
spin_lock(&rq1->lock);

}
}

}

2/28/2006CS 3204 Spring 2006 12

Basic Scheduling: Summary
• FCFS: simple

– unfair to short jobs & poor I/O performance (convoy
effect)

• RR: helps short jobs
– loses when jobs are equal length

• SPN: optimal average completion time
– unfair to long jobs
– requires knowing (or guessing) the future

• MLFQS: approximates SPN without knowing
execution time
– Can be unfair to long jobs

3

2/28/2006CS 3204 Spring 2006 13

Proportional Share Scheduling
• Aka “Fair-Share” Scheduling
• None of algorithms discussed so far give direct

way of assigning CPU shares
– E.g., give 30% of CPU to process A, 70% to process

B
• Proportional Share algorithms assign “tickets” or

“shares” to processes
– Process get to use resource in proportion of their

shares to total number of shares
• Lottery Scheduling, Stride Scheduling

[Waldspurger 1995]
2/28/2006CS 3204 Spring 2006 14

Lottery Scheduling
• Idea: number tickets between 1…N

– every process gets pi tickets according to importance
– process 1 gets tickets [1… p1-1]
– process 2 gets tickets [p1… p2-1] and so on.

• Scheduling decision:
– Hold a lottery and draw ticket, holder gets to run for

next timeslice
• Nondeterministic algorithm
• Q.: what’s the complexity of this algorithm?
• Q.: what if a process is blocked?
• Q.: how to implement priority donation?

2/28/2006CS 3204 Spring 2006 15

Scheduling Summary

• OS must schedule all resources in a system
– CPU, Disk, Network, etc.

• CPU Scheduling affects indirectly scheduling of
other devices

• Goals:
– Minimizing latency
– Maximing throughput
– Provide fairness

• In Practice: some theory, lots of tweaking

